
T H E  W O R L D ’ S  L E A D I N G  i - T E C H N O L O G Y  M A G A Z I N E  J D J . S Y S - C O N . C O M

DEVELOPING AN ECLIPSE BIRT REPORT ITEM EXTENSION PAGE 52

PLUS...
Portable Persistence Using the EJB 3.0

Java Persistence API
Building a Simple

VocabBuilder Application

RETAILERS PLEASE DISPLAY 
UNTIL DECEMBER 31, 2006

   JDJ.SYS-CON.COM      VOL.11  ISSUE:10

No. 1 i-Technology Magazine in the World

   JDJ.SYS-CON.COM

Inheritance Hierarchies

in JPA

SEE PAGE 47



�������������������������������������
������������������������

�������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

�������������

�����������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

��������������������������������������������������������������������������

�������������������������������������������������������������������������������

��������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������

���������������������������
�����������������������������������������

����������������������
����������

������������������
���������������������

���������������

������������������
����������������

��������
�������������

������������������
�����������

������

���������������
��������������

��������

������
�������

�������������������

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �



3October 2006JDJ.SYS-CON.com

hen the fast-paced, three-day 
program of AJAXWorld Con-
ference & Expo in the Santa 
Clara Convention Center 

finally ended earlier this month, with 
over 90 technical sessions and presen-
tations from leading AJAX vendors like 
Laszlo Systems, JackBe, and Backbase as 
well as from established software giants 
like IBM, TIBCO, and Adobe, the over-
whelming impression delegates, speak-
ers, and sponsors alike were left with 
was of having been in attendance at 
something special, something unusual, 
something potent. 
 “The AJAX Moment,” as I have been 
calling it for several months now, was 
almost palpable in California for those 

three days. So it was no surprise that lit-
erally dozens and dozens of companies 
chose to make announcements timed 
to capitalize on the vast attention that 
the Conference attracted in the world’s 
media, nor was it surprising that the 
OpenAjax Alliance should have timed 
the most important membership meet-
ing of its history – the meeting at which 
it elected its first-ever Steering Commit-
tee – to coincide with AJAXWorld 2006. 
 The fact that the OpenAjax meeting 
was hosted by Sun, however, might ini-
tially surprise a few readers – especially 
since Sun didn’t win any of the seven 
positions on the committee. But there is 
plenty of interest in AJAX at Sun, even if 
it came a tad late in the game – so late 
that a Distinguished Sun Engineer like 
John Crupi was able to be lured away to 
become CTO of nimble startup JackBe, 
and so late that he was able in turn to 
entice Deepak Alur and Dan Malks (also 
both Java experts from Sun) to join him. 
 No company on earth had more 
speakers on the inaugural AJAXWorld 
speaker faculty than Sun, including 

Greg Murray – Servlet 2.5 Specification 
Lead, now the AJAX architect for Sun. 
Greg spent several weeks preparing  
for that OpenAJAX Alliance member- 
ship meeting at Sun’s Santa Clara  
headquarters. 
 Other Sun speakers on the AJAX-
World 2006 faculty included Inderjeet 
Singh, who gave a session on “Java EE 
5 BluePrints for AJAX-Enabled Web 2.0 
Applications” and is a senior staff engi-
neer with Sun Microsystems where he 
is the architect for the Java BluePrints 
program; David Van Couvering (“Em-
bedding a Database in the Browser: 
Enabling Offline AJAX”), the original ar-
chitect for the Sybase J2EE application 
server and for the first release of the 

clustered Sun Java Application Server 
Enterprise Edition; Craig McClanahan 
(“Encapsulating AJAX Functionality 
in JavaServer Faces Components”), 
original author of Apache Struts, part of 
the expert group that defined the servlet 
2.2, 2.3 and JSP 1.1, 1.2 specifications, 
and the architect of Tomcat’s servlet 
container Catalina; and Francois Orsini 
(“Apache Derby - A Local AJAX Data 
Store”), a senior staff engineer working 
in the database technology group at Sun 
with 18 years’ experience in databases 
and infrastructure development.  
 While stopping short of trying to  
fool people into believing that the J in 
AJAX stands not for JavaScript but for 
Java, Sun is absolutely committed by  
the look of things to making sure that 
developers and IT architects are aware 
of how AJAX is agnostic as to which 
server-side language is being used, be 
it Java, ColdFusion, PHP, .NET, Perl or 
whatever. 
 Sun wants Java to be a part of “The 
AJAX Moment” – and a big part, at  
that.  

From the Editor

AJAX – What’s In It  
for Java

  Editorial Board 
 Java EE Editor: Yakov Fain

   Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to 
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your 

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)  
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or 

Money Orders) Back Issues: $10/ea. International $15/ea. 

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645 

Telephone: 201 802-3000  Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135 
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage 

rates are paid at Montvale, NJ 07645 and additional mailing 
offices. Postmaster: Send address changes to: Java Developer’s 
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road, 

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No 

part of this publication may be reproduced or transmitted in  
any form or by any means, electronic or mechanical, including 

photocopy or  any information storage and retrieval system, without 
written permission. For promotional reprints, contact reprint  

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media 
and SYS-CON Publications, Inc., reserve the right to revise, republish 
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution 

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered 

trademarks of Sun Microsystems, Inc., in the United States and 
other countries. SYS-CON Publications, Inc., is independent of 
Sun Microsystems, Inc. All brand and product names used on 
these pages are trade names, service marks or trademarks of 

their respective companies.

Jeremy Geelan is  

group publisher of  

SYS-CON Media and  

is responsible for the 

development of new 

titles and technology 

portals for the  

firm. He regularly 

represents SYS-CON  

at conferences and 

trade shows, speaking 

to technology  

audiences both in  

North America 

and overseas.

jeremy@sys-con.com

Jeremy Geelan

W



AJAX



5October 2006JDJ.SYS-CON.com

OCTOBER 2006 VOLUME:11  ISSUE:10

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by 
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645. 
Periodicals postage rates are paid at Montvale, NJ 07645 and additional 
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON 
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

Portable Persistence Using 
the EJB 3.0 Java Persistence API

by Mike Keith and Merrick Schincariol

Developing an Eclipse BIRT 
Report Item Extension

by Jason Weathersby, Iana Chatalbasheva, 
and Tom Bondur

52

FROM THE EDITOR

AJAX – What’s In It for Java?
by Jeremy Geelan.................................3

PRESSROOM

Industry News
JDJ News Desk.................................6

VOCABULARY

Building a Simple 
VocabBuilder Application
Creating a good impression
 by Kanchan Waikar.................................14

DESIGN PATTERNS

AOP, IoC, and OO Design Patterns 
Without Frameworks
Finding the right balance
by Jinsong Yang.............................22

Q & A 

NetBeans
Interview with Tim Cramer, executive director of 
tools at Sun
by Joe Winchester..............................26

OPEN SOURCE 

Fault Tolerance with Open 
Source  
and JVM Clustering
A marriage made in Java
by Ari Zilka..............................44

JAVA 5 

Collecting Financial Market Data 
with Java 5
Decouple data acquisition from data processing
by Michael Poulin..............................46

DESKTOP JAVA VIEWPOINT

The Perils of Abstraction
by Joe Winchester.............................50

JSR WATCH

JCP:  Shaping the Next Chapter
by Onno Kluyt.............................62

30 by Jon Hoffman

8

EASY WAYTH
EEASY WAYTH
EAJAX

With Java and DWR

Inheritance Hierarchies in JPA
by Raghu R. Kodali and Jonathan Wetherbee

38



JDJ.SYS-CON.com6 October 2006

SAP NetWeaver Achieves Java EE 5 Compatibility
(Walldorf, Germany) –SAP AG has announced 
it has achieved Java Platform, Enterprise Edi-
tion (Java EE) 5 compatibility. SAP NetWeaver 
has been providing complete support for Java 
technology since 2003. Achieving compatibility 
means SAP customers and partners can develop 
robust Java applications on the SAP NetWeaver 
platform using the latest mature technology 
standards – simplifying and accelerating ap-
plication development projects. A preview of 
SAP’s Java EE 5 implementation is available for 
download on SAP Developer Network at http://
www.sdn.sap.com/.
 Java EE 5 represents a significant step for-
ward to simplify the Enterprise Java program-
ming model. The design goals of Java EE were 
to streamline features and convenience to the 
platform, thereby improving performance and 
reducing development time. For SAP custom-
ers and partners developing applications on 
the SAP NetWeaver platform, compatibility of 
SAP NetWeaver Application Server with Java 
EE 5 will enable them to speed time-to-market 
with enterprise service-oriented architecture–
based applications and reduce overall total 
cost of ownership (TCO). It also provides out-
of-the-box connectivity to all SAP systems.

IBM Helps Businesses Increase Productivity with 
New Web Content Management Software
(Armonk, NY) – IBM has announced the avail-
ability of IBM Workplace Web Content Manage-
ment 6.0, offering businesses simple customiza-
tion tools that accelerate content creation and 
provide tight integration with IBM WebSphere 
Portal. 
 The new solution delivers easy-to-use author-
ing tools, making it simple for non-technical us-
ers to create and publish customized, up-to-the 
minute Web content. New ease-of-use features 
include menu-based personalization tools that 
allow users to customize forms based on a role 
or function. In addition, a choice of rich text edi-
tors and wiki-like editing features help users edit 
objects and data on-the-fly within the context of 
a Web site or portal.  www.ibm.com

McObject Releases Perst Lite
(Issaquah, WA) – McObject has released Perst 
Lite, a micro-footprint version of the Perst open 
source, object-oriented embedded database. 
Perst Lite targets embedded systems and intel-
ligent devices developed on the Java 2 Platform, 

Micro Edition (J2ME), bringing object-oriented 
database services to the fast-growing embedded 
Java development community. 
 Perst Lite features include: B-tree, Patricia 
Trie, Bit index, T-Tree and R-Tree indexes as 
well as List, Relation, and Set collections, all 
protected by transactions supporting the ACID 
properties (Atomicity, Consistency, Isolation 
and Durability). It also offers multithreaded 
access, data encryption and asynchronous 
replication. 
 Under Perst’s dual license, users can modify 
Perst and Perst Lite database source code and 
use it freely in other open source applica-
tions (software for which source code is made 
available) under the GNU General Public 
License (GPL). McObject’s commercial license 
is required if source code of the Perst- or Perst 
Lite-based applications is to be withheld.
 More information, as well as Perst Lite and 
Perst database software for Java, is available 
from www.mcobject.com/perst. 

Real-Time Java Technology Monitors Traffic, 
Patients and Products
 aJile Systems Inc., a company founded 
by the developers of a direct execution Java 
technology microprocessor, announced three 
deployments of its just-released Java M2M 
(machine-to-machine) edge controller at the 
CTIA conference this week. aJile has been se-
lected by InfoTek Wireless (www.infotekwire-
less.com) to provide controllers for a 100% 
Java technology remote traffic monitoring 
system; Rosonix (www.rosonix.com) has opted 
for aJile technology for its remote bio-moni-
toring systems; and AssetPulse (www.asset-
pulse.com) has chosen aJile to deploy its 100% 
Java technology RFID-enabled asset tracking 
solution.
 By offering a Java technology edge control-
ler, aJile enables developers to seamlessly 
integrate their core enterprise applications 
with remote edge applications using a single 
development language. And by using a single 
language – Java – that enjoys wide acceptance, 
a substantial ecosystem of third-party devel-
opers, a large pool of Web-based applications, 
industry-standard APIs and protocols, and 
programming environments on every PC 
platform, developers can reduce development 
time and maintenance costs, while improving 
reliability, portability, reusability and system 
security.  www.agile.com   

Pressroom

Industry News President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO: 

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com 

Advertising
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Kerry Mealia  kerry@sys-con.com

Lauren Orsi  lauren@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:

 Lauren Genovesi laureng@sys-con.com

Production

Lead Designer:

                    Tami Lima   tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

 Mandy Eckman mandy@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Paula Zagari paula@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Accounts Receivable:

 Gail Naples  gailn@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com





JDJ.SYS-CON.com8 October 2006

xperience has taught us that it’s not enough to simply 
have a persistence standard as part of an enterprise 
specification. It must be a standard that can solve 
people’s problems and be useful to most of the 

applications that want to use it. While earlier versions of 
Enterprise JavaBeans (EJB) persistence met some of the 
needs, they were primarily focused on the distributed 
problem domain. It is now known, and has been proven by 
successful commercial products like Oracle TopLink and 
Open Source projects like JBoss Hibernate, that the objects 
to be persisted don’t have to be anything more than simple 
Java objects. The proof was in the popularity of these Ob-
ject-Relational Mapping (ORM) tools; most developers have 
tended to pick up and use these tools rather than adopt the 
Java 2 Enterprise Edition (J2EE) entity bean programming 
standard.
 The problem was that even though ORM technology 
suited them, some corporate IT shops were somewhat un-
comfortable with using proprietary APIs in their large-scale 
applications. They wanted and needed the flexibility and 
reduced risk that comes with standards-based development. 
The time for standardization of persistent POJOs (Plain Old 
Java Objects) had come and the EJB 3.0 Java Persistence API 
(JPA) was born. It was completed and released as part of Java 
Enterprise Edition 5 (Java EE 5) in May 2006. Now everybody 
who has been using a proprietary Java persistence product 
can develop to a standard set of APIs and benefit from the 
portability and common experience that standards bring to 
the table. In this article we will introduce you to a few parts 
of the JPA API and show how they can enable developers to 
write portable persistence applications. We will also high-
light interesting portability pitfalls that could ensnare the 
unwary developer.

The Domain Model
 The primary currency of the JPA is the entity, which is just 
a regular Java object that may be persisted to a relational da-
tabase. Entities can be created, queried for, accessed, modi-
fi ed, and removed from the table or tables that contain the 
state and are uniquely identifi ed by means of their persistent 
identity or primary key. 
 Note that entities are quite different from the entity beans 
of previous EJB versions. Entity beans were full-bodied com-
ponents that contained built-in remoting, transactional and 

security logic inserted into container-generated sub-classes 
by the EJB container at deployment time. Entity beans were 
created and destined to be entity beans, and were not suited 
to be anything else. Conversely, entities are simple object 
classes that don’t have to contain any JPA-specific code. 
A class may often be designated as an entity without even 
changing a line of code in it; however, if annotations are 
used, the developer can choose to add them to the code if he 
decides it’s appropriate. The entity object model is com-
pletely agnostic not only to the vendor (called the persis-
tence provider) but possibly even the fact that it’s persistent. 
For example, a developer could take an existing non-per-
sistent class called Flight and make it persistent simply by 
indicating that it’s an entity through the use of an @Entity 
annotation in the class:

@Entity public class Flight { ... }

 Or, the developer could leave the class entirely alone and just 
add an entity entry in a separate XML mapping fi le:

<entity class=”Flight”>

    ...

</entity>

 Regardless of which approach is used, the Flight class will 
continue to function as either a non-persistent class or a 
persistence entity depending on how it’s used. It may have 
DomesticFlight, InternationalFlight, or other classes that 
extend it, and these classes may be entities or non-entities, 
but regardless of the JPA implementation, the object model 
can be exactly the same. No additional constraints, such as 
having to implement an interface or extend a special super-
class, are imposed on the Flight class by either the API or 
persistence vendor implementations of the API.

O-R Mapping Metadata
 We just saw how either an annotation or XML can be 
used to designate a class as an entity. This is obviously just 
scratching the surface of the metadata that is available and 
that dictates how the entity can be used or mapped. There’s 
a host of JPA metadata in both annotation and XML forms, 
and the fact that this metadata is defined by the specifica-
tion is significant for portability. 

E

Mike Keith is an architect 

for Oracle TopLink and 

the Oracle OC4J Java EE 

Container. He was the 

co-specifi cation lead of 

EJB 3.0 (JSR 220) and a 

member of the Java EE 

5 expert group (JSR 244) 

and co-authored (with 

Merrick) Pro EJB 3: Java 
Persistence API. 

by Mike Keith and Merrick Schincariol

Portable Persistence Using the 
         EJB 3.0 Java Persistence API

Feature

The time for standardizing 
persistent POJOs has come

Portable Persistence Using the
         EJB 3.0 Java Persistence API
Portable Persistence Using the 
         EJB 3.0 Java Persistence API

The time for standardizing 
persistent POJOs has come
The time for standardizing 
persistent POJOs has come



9October 2006JDJ.SYS-CON.com

 The largest portion of metadata is typically applied 
to entities for purposes of object-relational mapping, or 
mapping the state in the entity to the tables and columns 
in the database. Until JPA came along every ORM tool had 
its own way of defining and storing the ORM information 
for the entities that were mapped to the database. The 
JPA specification defines specifically and exactly how the 
metadata should be formed for a group of entities or the 
entities that make up a persistence unit. For example, we 
can choose to mark up our Flight class using annotations 
to indicate how it’s mapped to the database.

@Entity 

public class Flight {

    @Id 

    @Column(name=”ID”)

    int flightNumber;

    @Column(name=”DEP_TIME”)

    Timestamp departureTime;

    String dest;

    @OneToMany(mappedBy=”flight”)

    Collection<Passenger> passengerList;

    ...

}

 The annotations denote how the Flight class is mapped 
to the database. The @Table annotation is used to indicate 
to which table the entity is mapped, but it’s often not 
even required since a default table name will be ap-
plied in its absence. The default name that is used is the 
unqualified name of the class. In this case the table will 
be called FLIGHT. The attribute mappings show how the 
members of the Flight class correspond to the columns 
of the FLIGHT table. The @Id annotation indicates that 
flightNumber is the primary key attribute, and the ac-
companying @Column annotation shows that it maps to 
the primary key column ID in the FLIGHT table. Like-
wise, the @Column annotation on the departureTime 
attribute denotes that the departure time is stored in the 
“DEP_TIME” column. Since there’s no annotation on the 
dest attribute, the column name is defaulted to the name 
of the attribute, or DEST. The passengerList attribute is 
annotated with an @OneToMany annotation, signifying 
that it’s a one-to-many relationship and the name of the 
foreign key or join column in the database is specified by 
the Passenger.flight attribute mapping.
 All of this mapping metadata is very convenient in that 
regardless of the JPA implementation runtime, the same 
annotation configuration will imply exactly the same OR 
mappings. Even the same default values will be used since 
the rules for defaulting are dictated by the specification.

 The XML mapping file alternative is equally portable 
in that the same mapping file(s) can be used when run-
ning with any and every compliant JPA vendor. The map-
ping files may be used to increment or even override the 
mapping information stored in annotations, and because 
the overriding characteristics are defined to the level of 
entity attributes, they can be portably overridden. For ex-
ample, if we had an XML mapping file that contained the 
following, it would cause the departure time and destina-
tion to be stored in the DEPT_TIME and DST columns, 
respectively. 

<entity class=”Flight”>

  <attributes>

    <basic name=”departureTime”>

      <column name=”DEPT_TIME”/>

    </basic>

    <basic name=”dest”>

      <column name=”DST”/>

    </basic>

  </attributes>

</entity>

Persistence Unit Metadata
 The other main type of metadata is the persistence unit 
metadata, or metadata that applies to an entire group or 
configuration of entities. This metadata is stored in a file 
called persistence.xml and includes the things that are 
normally defined for a given runtime environment. For 
example, although JPA can run in a Java SE environment 
it will typically be used in an application server. When 
running in Java EE the persistence provider will have to 
know which data source to use to connect to in order to 
retrieve and store entity data. The JNDI name of the data 
source can be specified in the persistence.xml file, and 
is portable as long as that data source is configured and 
present in the JNDI namespace of the server runtime be-
ing used.
 A number of provider-specifi c properties can be included 
in the persistence.xml fi le. The properties are primarily for 
non-standard features, but they are specifi ed in a standard 
way that lets different vendors use the same format. So 
while developers may need to specify a different property 
for each vendor, a given vendor will recognize the properties 
that apply to it but ignore those that it doesn’t know about. 
As an example, if a developer wanted the logging level to be 
set to the level that included printing the generated SQL and 
he was running in either TopLink Essentials or Hibernate 
then he would have the following property section in his 
persistence.xml fi le:

<properties>

   <property name=”toplink.logging.level” value=”FINE”/>

   <property name=”hibernate.show-sql” value=”true”/>

</properties>

Merrick Schincariol is 

a senior engineer for 

the Oracle OC4J Java EE 

Container. He was a lead 

engineer for Oracle’s 

EJB 3.0 release and co-

author of Pro EJB 3: Java 
Persistence API. Before 

joining Oracle, Merrick 

developed enterprise 

and large-scale systems 

for the telecommunica-

tions industry.

JPA can be used to write applications without being bound to 
any particular persistence provider or vendor”“

Portable Persistence Using the 
         EJB 3.0 Java Persistence API
Portable Persistence Using the 
         EJB 3.0 Java Persistence API



JDJ.SYS-CON.com10 October 2006

 Spring 2.0 users can make use of the additional Spring 
abstractions over some of the more common properties, 
such as logging, thereby gaining an additional level of por-
tability across vendors.

Persistence Operations
 The way to operate on entities in JPA is by invoking a 
method on an entity manager and passing the entity as 
an argument to the method. The entity manager provides 
a common interface for entity operations and provides 
entity management within a transactional or even longer 
scoped context. For example, to persist a Flight entity, one 
only has to have access to an entity manager and invoke 
the persist() method on it, passing in the Flight entity as 
follows:

Timestamp depTime = 

    Timestamp.valueOf(“2006-09-30 05:07:0”);

Flight newFlight = 

    new Flight(552, depTime, “San Francisco”);

em.persist(newFlight);.

 When the transaction commits, the entity will be guar-
anteed to be committed to persistence storage. Likewise, 
one may use an entity manager to obtain a pre-existing 
instance of a Flight entity based on its flight id:

Flight flight552 = em.find(Flight.class, 552);

 The entity manager has a complete and understandable 
API that is the main gateway to using JPA. However, persis-
tence providers implement entity managers, and because 
allowances are made in the specification for different kinds 
of implementations, the semantics are sometimes a little 
looser than what you might expect. For example, in the 
persist() operation above we mentioned that the entity will 
be guaranteed to be committed to the database when the 
transaction commits. We didn’t say when the data actually 
gets written to the database because the specification ac-
tually allows the provider either to eagerly write it or defer 
the write until the transaction commits. The only thing 
the user can rely on is that by the time the transaction has 
successfully committed the data will be in the database. 
It turns out that almost all vendors will actually defer the 
write because it’s more efficient, but users who rely on this 
fact could be in trouble if they change providers (perfor-
mance and scalability degradation aside).
 The entity manager is a scaled-down version of the ses-
sion API that has long been used in TopLink or a similar 
session API in Hibernate. The most common and useful 
operations on these session APIs have been normalized 
into the entity manager and represent an API that spans all 

persistence providers. Programming to the JPA EntityMan-
ager API will enable an application to be portable across 
these providers and prevent non-standard or proprietary 
features from slipping in.

Queries
 To execute a query in JPA a query object must first 
be obtained from an entity manager. The query criteria 
is specified either dynamically in code or statically in 
metadata, and is normally expressed in terms of the JPA 
query language called the Java Persistence Query Lan-
guage (JPQL). Queries are executed and depending upon 
the query the results may be returned either as entities, 
temporary non-entity objects, or even report data.
 JPQL is based on EJB QL but is more powerful and 
more flexible. It still provides an abstraction language 
that’s used to express queries in terms of entity state and 
relationships, but is expanded to include a host of new 
language features including a larger set of functions, 
outer joins, named parameters, sub-selects, aggregation, 
bulk updates and deletes, and much more. Because JPQL 
is a database-neutral language, queries expressed in JPQL 
are not only portable with respect to persistence provid-
ers but also across databases.
 Queries may also be created using native SQL. This will 
typically reduce portability across databases but won’t af-
fect persistence provider portability. Queries that use SQL 
will produce uniform results and are mapped to entities 
in a standard way. SQL queries are discouraged, however, 
unless really needed, since they’re less maintainable and 
result in a tighter coupling to the database.
 A typical dynamic query to return a list of all of the 
flights going to a specific destination would be created 
and executed the following way. The destination is a 
named parameter that is bound to an argument before 
being executed, so the same query instance can be reused 
for querying different destinations. We’ll find all the 
flights going to San Francisco.

Query q = em.createQuery(

    “SELECT f FROM Flight f WHERE f.dest=:destination”);

q.setParameter(“destination”, “San Francisco”);

List sfResults = q.getResultList();

 While this query is completely portable in terms of its 
execution, what about the semantics of the query, or the 
results that are returned? Could the results differ depend-
ing upon the context in which it’s executed? For example, 
if there was a transaction in progress and a new flight to 
San Francisco was added in the transaction, is that flight 
going to be returned by all providers? Remember that if 
the transaction hasn’t been committed yet, depending 

Feature

The query criteria is specified either dynamically in code or statically  
in metadata, and is normally expressed in terms of the JPA query  

language called the Java Persistence Query Language (JPQL)”
“



���������������������
������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������
��������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������
������������������������������������������������������������������������������������
��������������������������������������������������������

���������������������������������������������������������������������������������������
������������������������������������������������������������������������������������
��������������������������������������������������������������������������
�������������������������������������������������������

������������������������������������������������������������������������������
�������������������������������������

������������������������������������������

���������
�������������������

����������
���������������������������



JDJ.SYS-CON.com12 October 2006

upon the implementation, the new flight may not even 
have been written to the database. 
 The answer is that there is something called a flush 
mode that determines whether all changes in the trans-
action have been written out. By ensuring that the flush 
mode setting causes a flush to occur before transactional 
queries are executed, the results will always be the same 
regardless of the persistence implementation. In fact, to 
achieve portability and query results that most people 
would expect, the flush mode is set this way by default. 
To avoid the performance overhead of issuing a flush be-
fore a query, the flush mode is often changed. However, 
to ensure portability this should only be done when it’s 
known that any entities modified earlier in the transac-
tion won’t affect the outcome of the query. Alternatively, 
queries can be executed outside of transactions, typically 
improving the performance of the query in the process.
 One of the best practices for creating queries is to de-
fine them statically using the named query facility. Named 
queries are queries that are defined in annotations or 
XML and offer an additional form of application portabil-
ity. The query criteria may be separated from the applica-
tion code and filled in using JPQL, SQL, or any proprietary 
query language, such as the TopLink expression frame-
work. The above query could be defined as a named query 
by defining the following annotation that specifies the 
name of the query and the query criteria as follows:

@NamedQuery(name=”Flight.findByDestination”, 

  query=“SELECT f FROM Flight f WHERE f.dest=:destination”)

 The query is invoked by obtaining an instance of the 
named query, binding the parameter, then executing it, 
similar to the dynamic query example above:

Query q = em.createQuery(“Flight.findBy

Destination”);

q.setParameter(“destination”, “San Francisco”);

List sfResults = q.getResultList(); 

Vendor-specific Features
 It’s not unusual that a large application has require-
ments that the JPA 1.0 can’t fulfill. After all, the first 
release of JPA included a lot of features, but as men-
tioned above, not everything was added. There are still a 
number of features up for discussion and possible inclu-
sion in subsequent JPA releases that at this point in time 
are vendor-specific. Pessimistic locking is an example of 
a feature that’s not usually required but on rare occasions 
is absolutely necessary. 

 Vendor-specific features can be accessed a number of 
different ways; some of them better than others. As we 
saw in the persistence unit metadata section, JPA does 
provide some mechanisms for vendors to incorporate 
additional features using standard APIs and the persis-
tence properties are one such way. Query hints are also 
a way for additional query features to be accessed either 
programmatically or through metadata. Vendors can de-
fine their own query hints that users can add to named 
or dynamic queries before they’re executed.
 Additional XML files and annotations are another 
common way for users to add vendor-specific metadata. 
Proprietary annotations tend to be more dangerous than 
XML because they introduce compile-time dependen-
cies in addition to any runtime dependencies that may 
exist.
 In code the vendor-specific EntityManager imple-
mentation class can be retrieved by calling a special 
method on EntityManager and casting the result. A 
Query can also be cast to a proprietary interface or 
class. These practices should be used with care because 
they introduce code dependencies into the application. 
 Regardless of how the feature is used, the best way to 
organize vendor-specific feature use is to try to localize 
it to specific metadata and code areas. This way if port-
ing is required it’s easy to find the metadata or code that 
might need to change.

Conclusion
 We’ve looked at only a few of the features of the EJB 
3.0 Java Persistence API, but we have already seen how 
it can provide applications with a modern and portable 
platform for object-relational mapping and persistence. 
By combining the principal and most significant fea-
tures of the major persistence solutions on the market 
and in the public domain, JPA can be used to write 
applications without being bound to any particular 
persistence provider or vendor. The underlying persis-
tence implementation could be changed with few or no 
changes to the application code that uses it.
 We did see a few examples of how some of the imple-
mentations may differ from each other though, so appli-
cation developers should still be alert to the nuances of 
the provider implementation. A simple understanding of 
the API is all that’s needed to develop simple persistence 
applications. However, to develop complex portable 
applications, a more thorough understanding is critical. 
For in-depth coverage on the features in JPA, as well as 
the portability issues of the API, we refer the reader to 
Pro EJB 3: Java Persistence API.  

Feature

We’ve looked at only a few of the features of the EJB 3.0  
Java Persistence API, but we have already seen how it can provide 
applications with a modern and portable platform for object-relational 

mapping and persistence”

“



top MISCONCEPTIONS that drive
Meet the most misunderstood developer team in the world. 

our Crystal Reports dev team crazy 

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or 
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition 
includes a free runtime license3 for each component engine. 

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments. 

Crystal Reports only works in Windows®. Not quite, whether you need to create or 
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood 

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named 
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other 
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.



JDJ.SYS-CON.com14 October 2006

o make a good impression, one 
needs to have a good vocabulary. 
Management Professionals, Uni-
versity Professors, or GRE/GMAT 

aspirants – we all benefit from a decent 
set of words in this competitive world.  
There are different ways we can improve 
our vocabulary, such as reading novels, 
articles, dictionaries and so on, but we 
often find very little time to do so. 
 During our “down-time” – when we are 
stuck in traffic for hours, or standing in 
some long queue - our mobile phone is 
often our only source of entertainment. If 
our mobiles – which one in three people 
already carry – had word-tutors, this time 
could be efficiently used to learn new 
adjectives, verbs and nouns. 
 To build such an application, words 
need to be stored in a database.  Since 
simple database implementation 
(RMS) is dynamic, the database needs 
to be built on every new mobile, after 
application is installed.  To remove this 
overhead, the only way to maintain the 
word-list is in a file. Because of some 
programming related issues, j2me does 
not provide a full fledged API for file 
access. Still, there are ways to use a file 
in a j2me application. In a Vocab Builder 
application, words and their meanings, 
stored in those files randomly, can be 
retrieved. 
 There are “n” number of constraints 
with mobile programming - such as 
power, speed, UI size, memory size 
limitations, and many others - which 
make programming for mobile appli-
cations difficult. Probably, this is the 
reason why we see very few attempts 
to create such software. However, 
a simple vocabulary builder can be 
implemented without much effort. 
The following article can be used  
as a guideline to develop a simple 
vocabulary builder for your mobile 
phone.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 First, let’s look at Implementation 
Diagram, as shown in Figure 1.
 All classes from the above diagram are 
explained in this article. Let’s start with the 
MIDlet class. Our application will have a 
MIDlet that will initiate the application. 

VocabBuilder Class
 Let’s define this MIDlet Class and 
name it VocabBuilder (see Figure 2).

public class VocabBuilder extends MIDlet 

implements CommandListener {

 This VocabBuilder MIDlet displays the 
operations menu for the user. The menu 
provides different functions that are sup-
ported by the VocabBuilder tool. Since 
the tool has 5 functionalities, the same 
are provided in the operations menu.

menuList = new List(“Expert Vocab 

Building”,List.IMPLICIT);

menuList.append(“Learn Adjectives”,adjecti

vesImage);          menuList.append(“Learn 

Verbs”, adjectivesImage);

menuList.append(“Learn Nouns”, adjectivesIm-

age);

menuList.append(“Add words”, verbsImage);

Vocabulary

by Kanchan Waikar 

Building a Simple 
VocabBuilder Application

T

Kanchan Waikar is a software 

professional working with  

one of the multinational IT  

companies. She is very much 

inclined towards mobile 

Programming.  Currently she is 

looking for some challenging 

work on J2me platform. 

waikar.kanchan@gmail.com

Creating a good impression

 Figure 1  Implementation diagram– Plain arrow: Normal Flow; Dashed arrow: Conditional flow

  
 

 

  

AddWordsToDictionary 
Form:
UI for entering 
Dictionary words.

Start

HelpForm Form:
Displays help to user.

WordDatabase Class:
Performs different 
operations on 
RecordStore.

DeleteWord Class:
Displays a list of 
custom dictionary 
words.

VocabBuilder MIDlet:
Parent MIDlet that 
controls application 
flow.

SelectRandom Class:
Returns random 
number.

WelcomeForm Form:
Displays welcome note.

AccessFileForm Form:
Displays random words.





JDJ.SYS-CON.com16 October 2006

menuList.append(“View / Delete words”, verb-

sImage);

menuList.append(“Help “,helpImage);

 To provide the word-list, a file is used as 
a datastore. In this class, a string that con-
tains the name of this file stores different 
words and their meanings.  Providing the 
get() method for this variable will ensure 
that the get() method returns the name of 
the file currently in use by the application.

private String wordDatabaseFile;

 As shown in Figure 3, the menu UI is 
displayed after the displayList() function 
of the VocabBuilder class is called on.
 After the user selects a particular 
option from List, the corresponding 
operation is performed by implementing 
the CommandListener Interface. In need 
of a common algorithm to implement 
functionality of the first three options, we 
call on the method of getRandomWords() 
of the accessFile class. This class will, in 
turn, fetch the words and display them 
on the Form. But before calling on the 
aforementioned method, we need to set 
the value for the wordDatabaseFile string. 

else if (c == List.SELECT_COMMAND) 

       {

         int selection=menuList.getSelect-

edIndex(); 

         switch(selection) 

         {

           case 0:

           wordDatabaseFile = 

“adjectives.kw”;

           accessFile.getRandomWords();

       break;

       case 1: 

   wordDatabaseFile = “verbs.kw”;

   accessFile.getRandomWords();

   break;

       case 2:

       wordDatabaseFile = “nouns.kw”;

        accessFile.getRandomWords();

       break;

       case 3:

          AddWordsToDictionary awdForm = 

new 

                         AddWordsToDictio

nary(this);

                Display.getDisplay(this).

setCurrent

                        (awdForm);

        awdForm = null

        break;

       case 4:

          DeleteWord dw  = new 

DeleteWord(this);

   dw = null;

       break;

       case 5:

           HelpForm helpForm = new 

HelpForm(this);

        Display.getDisplay(this).setCurrent

                        (helpForm); 

        helpForm = null;

        break;

         }

         }

 For the last three options, different 
classes are intitialized. These classes, in 
turn, will provide the functionality for 
adding, updating, deleting, and viewing 
the custom Dictionary. 

AccessFile Class
 This class fetches three random words 
at a time from the selected file as shown in 
Figure 4. In order to display these words, 
this class needs to extend Form Class.

public class AccessFile extends Form imple-

ments CommandListener

 Note: Generally, when people read 
words that are consecutive, they tend 
to get bored. Hence, the random words 
generation strategy can be used to retain 
the interest of the user. 
 We need a “Next” button in order to 
display the next set of random words. 
This application opens the file in which 
word-meaning pairs are stored. We all 
have come across the apothegm, “differ-

Vocabulary

Generally when we read words that are consecutive, we tend  
to get bored. Hence random words generation strategy was used  

to retain the interest of the user”
“

 Figure 2  Figure 3  Figure 4



�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

RCP Developer�������������������������������������������������������������
������������������������������������������������������������������������

�������������������������������������������
���������������������� ��������������

�����������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������
����������������������������������������������������������������������

SWT Designer™  WindowTester™ Help Composer™ RCP Packager™

��������������������������������������
��������������������������������������������������������������������������������������������
���������������������

�������������������������������������������
����������������������������������������������������������������������������������������������
���������������������������������

������������������������������������������
������������������������������������������������������������������������������������
���������������������������������������������������

�����������������������������������������������
��������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������
������������������������������������������������������������������

���������������������������������������������������������������

RCP Developer™

����������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������
������������� ������������������������������������ ������������������ ��������������� �����������

���������������������
�����������

�����������������������������������

����������������������������

������� ��������
�����������������������
������������������
��������������������������
������������������������
�������������������������
������������������������
���������������������
������������

����� �������������������
�����������������������
��������������������������
���������������������
��������������������������
���������������������
���������������������������
��������������������
�����������

������������������
���������������������
��������������������
�����������������������
�����������������������
������������������������
��������������������������
�������������������������

�������������������
�������������������������
��������������������������
���������������������
�����������������������
�����������������
��������������������
�������������������������
��������������

RCP Developer™ 2.0

STAND ON
THE SHOULDERS OF GIANTS



JDJ.SYS-CON.com18 October 2006

Vocabulary

ent people, different needs”.  Accordingly, 
the user can choose a “learning area” 
appropriate to his or her needs. Some 
people are weak in adjectives, whereas 
others are weak in nouns, so different 
interfaces are provided for nouns, adjec-
tives and verbs. Since implementation of 
all three is identical, an AccessFile class 
was created. To open the file and read the 
contents, the following function is used:

inputStream = 

      getClass().getResourceAsStream(vb.get-

DataFileName());

 inputStream is an object of Input-
Stream class.  Using getClass.getRe-

sourceAsStream(), we can open the file 
that is stored in  the “res” library of the 
application package. After opening the 
file, we need to position the cursor in a 
random position. This can be done using 
following function:

inputStream.skip(selectRandom.getRandomPosi-

tion())

 Here, a selectRandom class is used, 
which returns the random position in 
the file.  By using the skip function of 
inputStream object, we reposition the 
cursor in a random position.
 After a random position has been 
selected, the selected words can be 
fetched.   Take extra care in the format 
in which the selected file is stored. 
Since the file used in the application 
has a word-meaning pair in a line  
the following strategy is used for  
fetching:

 for(int j = 0; j<3;j++)

    {

 /** Create the word by adding all the char-

acters */

     while ((tempCharRead = inputStream.

read()) != -1 &&   

             tempCharRead != ʻ\nʼ )

     { 

      word_meaning[j] = word_meaning[j]+ 

(char) 

                       tempCharRead;

     }

     this.append(wordMeaning);

    }

 Since a word and its meaning are 
separated by a colon, the pair can be 
displayed in the same way on Form, us-
ing the append() method. In formatting, 
string item data type can be used. Next 
and Exit buttons are provided on the 
form for navigating through the word 
list.

     if (cmd == nextCommand)

  getRandomWords();

  else if (cmd == exitCommand)

      vb.displayList(); // This is the main 

MIDlet Operations List.

 If the user presses the next button, the 
application displays a new set of words, 
whereas if Exit is selected, the applica-
tion takes control to the main List.

SelectRandom Class
 This class fetches the file and depend-
ing on its size, it generates a random 
value. If the value generated is posi-
tioned towards last word, then the ap-
plication might display only one or two 
words instead of three. In order to avoid 
this the maximum value to be generated 
can be set: 

int skipValue=  Math.abs((int) System.cur-

rentTimeMillis() % count);

 The maximum feasible number that 
will prevent the display of less than three 
randomly generated words is “count”. 
A more sophisticated algorithm can be 
used for generating the random number.  

AddWordsToDictionary Class

 Along with rapid learning mode, a 
customized dictionary can be provided 
to the user. An interface that will let 
the user maintain his dictionary is 
needed. In order to make the applica-
tion compatible with a wider range 
of handsets, the architecture of the 
application needs to be as simple as 
possible. The database package can be 
used for better management, but only 
highly sophisticated handsets can sup-
port the Database package. Therefore, 
the RecordManagement Structure is 
needed to create, close, delete, and 
rebuild the database.  It is important to 
note that the record structure doesn’t 
support the primary key concept, so 
certain checks need to be implemented 
in the component to make it support 
primary key concept.
 Now, let’s look at the structure of the 
AddWordsToDictionary Class. Below 
(See Figure 5) is the UI that takes the 
user’s words and stores them in the 
dictionary.
 By providing “My dictionary”, the user 
can maintain his or her own dictionary. 

Along with rapid learning mode,  
a customized dictionary can be provided to the user.”“

 Figure 5

 Figure 6



�������������� ��������������������������������������������������������������
�����������������������������������������������������������������������������������
������������������������������������������������������������������������������
�����������������������������������������������������������������������������������

������������������������������������������������������������������������
��������������������������������������������������

������������������������ ����������������������������������������������������� ������������������������������������������������������

����������������������������������������������������������������������������������������������������������������

����������������������

��������������� �������������������� ������������



JDJ.SYS-CON.com20 October 2006

In order to support this functionality, the 
following operations are needed:
1. Insert
2. Update (here Appending new mean-

ing will be more useful)
3. Delete (optional, but can be useful if 

the user is planning to have a new set 
of words in his dictionary everyday)

4. View Dictionary

 This class implements the first two 
functionalities.  A Form is needed to 
display TextFields, from which the user 
can enter the data.

  wordTextField= new TextField(“Enter Word”, 

“”,20, 

                              TextField.

INITIAL_CAPS_WORD); 

  meaningTextField= new TextField(“Enter 

Meaining”,””,50, 

                              TextField.

INITIAL_CAPS_WORD);

 Since user-input is being handled, 
extra care needs to be taken in entering 
data into the database to ensure proper 
validations are performed. Numbers are 
not allowed in word or meaning value.
 In order to perform the action, 
depending on the command entered by 
the user,  a CommandListener Interface 
needs to be implemented.

public void commandAction(Command command, 

Displayable displayable)

After the user has entered the word and its 

meaning, the word needs to be entered into 

the dictionary.

if(command==OkCommand)

{

 String wordField=wordTextField.getString();

 String meaningField=meaningTextField.get-

String();

       // Perform null input validations.

 if(wordDatabase.wordExists(wordField))

   // append new meaning

 else if(wordDatabase.getNumberOfRecords()+1 

> 

                               MAX_WORDS)

  // Display Database Overflow Alert 

 else //If everything is fine

  wordDatabase.writeRecord(wordField,meaning

Field);

 // Display Acknowledgement Alert

 This class appends the new meaning 
to the word if the word already exists in 
Database.

DeleteWord Class
 This interface can be used in order to 
view the dictionary (See Figure 6). Since 
the word-meaning pairs in the list are 
being shown, a List needs to be declared.
 The following code is used to fetch 
the words from the database and create 
a list:

RecordEnumeration wordRecEnum = 

       wordDBReference.

enumerateRecords(null, null,true);

RecordEnumeration meaningRecEnum = 

       meaningDBDatabaseReference.

enumerateRecords(null, null, true);

while (wordRecEnum.hasNextElement()) 

{

    String fetchedWord =  

      new string(wordRecEnum.nextRecord());

    String fetchedMeaning = 

      new String(meaningRecEnum.nextRe-

cord());

    displayList.append(fetchedWord+” :  

                       “+fetchedMeaning,

bullet);

        }

 If the user selects a word to delete, 
then he or she needs to be shown the 
confirmation Alert message. If the user 
selects “Yes”, then the Record can be 
deleted and the information can be 
displayed. The following code will delete 
the selected word from the database:

wordDatabase.deleteScripRecord(selection.

substring

(0,selection.indexOf(“ “,2)));

 Alert recordsAlert = new Alert(“Deletion 

Successful”, “  Word Deleted !!       “, 

alertImage,AlertType.ERROR);

Helpclass
 This class displays static information 
about the application’s functionalities as 
shown in Figure 7.

Conclusion
 This article demonstrates the imple-
mentation of a Simple vocabBuilder ap-
plication. The application shows random 
adjectives/verbs/nouns depending on 
the user input. It also allows users to 
maintain their own dictionary and pro-
vides add/delete/update/view modes on 
a custom dictionary. There is great scope 
for upgrading this application to a much 
more sophisticated version. This en-
hanced version will be compatible with 
only recent, well-groomed handsets. An 
extensive database structure can be im-
plemented in order to add Artificial Intel-
ligence to the application. A search func-
tionality can be implemented to search 
the database and return the meaning of 
the word entered. Since we have used a 
sequential file data structure for storing 
the words and thier meanings, a search 
would have consumed a greater amount 
of processing time. Hence, this function-
ality was not implemented. Using the 
database / RecordStore Structure, this 
functionality can be easily implemented 
by firing a SQL Statement, or by doing 
comparisons in case of RecordStores. 
Further, we can also provide some word 
usage statements along with antonyms 
and synonyms. For audio-learners, the 
Audio Play feature could be added to 
Rapid Learning mode.   

Vocabulary

People say that you learn fast when you hear the words said  
hence Audio Play feature could be added to Rapid Learning mode”“

 Figure 7





JDJ.SYS-CON.com22 October 2006

’d like to share some of the design 
highlights of a large-scale content 
distributing system I worked on  a 
while back. Some of the highlights 

may seem trivial; some may be a little 
more complicated. To me, software 
design is a matter of finding a balance 
between applying available technolo-
gies and fulfilling real-world require-
ments and constraints. The goal of 
design is always to ensure both the 
runtime and development-time quality 
of the software.
 I’ll be using two of the components 
from the project, Scheduling Manage-
ment Component (SMC) and the Data 
Access Layer (DAL), for purposes of 
illustration. The function of SMC is to 
monitor the database and detect any 
newly added or updated content, and 
schedule that content for delivery based 
on some business logics. The DAL, as 
its name implies, provides data access 
services.

Extensibility by OOP Patterns  
and Principles
 In the early design phase of SMC, we 
quickly lay out some of the candidate 
classes, as well as the relationships 
among them. In UML notation, class 
details are omitted at this stage. Figure 
1 shows some of the major classes. 
The classes are by no means final, and 
neither are the relationships. We’re try-
ing, however, to capture the business 
requirements as much as possible.  
 We’ve designed the Schedule-
Manager class as the façade of this 
component. It exposes external APIs. 
Other components that need to inter-
act with SMC do so through this class. 
ScheduleManager is also in charge of 
managing the lifecycles of classes inside 
SMC. 
 One of the business requirements 
is that the first production release of 

the software won’t support clustered 
deployment, but it will in later releases. 
One of the keys to supporting clustering 
is managing the states of the component 
instances deployed across the clustered 
nodes so that they’re always in sync. 
Keeping this in mind, we decide to 
centralize the cluster-sensitive states of 
all the SMC classes into one class rather 
than having each class manage its own 
states. This results in a SchedulingCon-
text class. This class knows how to save 
and retrieve various states of the com-
ponent. When the time to support the 
cluster comes along, instead of having to 
open up each class and make changes, 
all we have to do is change the Sched-
ulingContext class – that modifyies the 
way this class accesses states so that all 
the clustered instances share the same 
states, virtually or physically.

 The UML diagram in Figure 2 shows 
some major classes after introducing 
the SchedulingContext class.  
 One issue we immediately notice 
with this design is the tight coupling be-
tween the SchedulingContext class and 
the classes that depend on it. As you can 
see, quite a number of classes depend 
on the SchedulingContext class. If we 
have to change the SchedulingContext 
class for any reasons (fixing bugs, add-
ing new business features, switching to 
other application server, etc.), chances 
are we also have to make changes  to the 
dependent classes.
 Following OO best practices, inter-
faces are good at promoting loose cou-
pling. In fact, it’s always a good idea to 
code to interfaces rather than concrete 
classes (another simple yet powerful 
OO principle). The solution is simple 

Design Patterns

by Jinsong Yang

AOP, IoC, and OO Design Patterns 
Without Frameworks

I

Jinsong Yang is a senior  

application engineer in a  

leading digital content providing 

company.  He has devoted the 

last five years to designing and 

developing large scale J2EE 

applications.  He holds an MS in 

Computer Science from UCLA.

yang.jinsong@gmail.com

Finding the right balance

 Figure 1  The Scheduling Management Component (SMC) class diagram

 In the OO world, there’s this design principle called the Open Close Principle. It says that software 

should be designed so it’s open to extension and closed to modification. Set aside its fancy name, it basi-

cally suggests that software should be extensible function-wise (i.e., open to extension) without having 

to open up existing code and modify it (i.e., closed to modification). Functional extension should be done 

by creating new modules and plugging them into the existing system.

 The consequence is beneficial. After all, you don’t want to modify your well-tested code and risk your 

code to new bugs, which can result in “wreck-a-mole”-style bug fixing (fixing one bug introduces more).

The Open Close Principle



23October 2006JDJ.SYS-CON.com

enough – we abstract the scheduling 
context by making SchedulingContext 
an interface. We also want this inter-
face’s client to be unaware of the actual 
implementation, and the GoF Abstract 
Factory Pattern does the job.
 The design of the Scheduling Context 
is shown in Figure 3. When it comes 
time to support clustering, we can do it 
with little programming.  It makes it a 
lot easier to maintain the software after 
it goes into production. We also avoid 
vendor lock-in by shielding the cluster-
sensitive implementation, which is 
likely to be vendor-specific.
 Another consequence of moving the 
states of an individual class into Sched-
ulingContext is that we can now design 
other stateless classes, which  is good 
because:
• A stateless class is thread-safe, avoid-

ing potential issues in a multithread-
ing environment (which SMC is)

• Generally speaking, stateless objects 
scale better

• Stateless classes are easier to maintain

 Note that, at this point, Schedule-
Manager and SchedulingContent are 
acting together as the “container” of the 
other classes in the sense that:
• The ScheduleManager class inter-

cepts all client calls to the component
• The ScheduleManager class manages 

the lifecycles of other classes
• The SchedulingContext interface pro-

vides a gateway to access component 
states

 This is intended and, as you’ll see 
later, we’ll use the container-like feature 
of these two classes more in our design.

Decoupling with IoC Pattern
 So far, everything is pretty simple and 
straightforward. What else can we do to 
make the design better?
 With the current design, unit test-
ing isn’t a trivial task. Let’s take the 
FNDTaskPuller class as an example. 
Listing 1 shows the simplified version of 
this class. For demonstration purposes, 
let’s assume this class has a business 
method, someBizMethod().
 To test this class, we’d create a test 
class similar to the one shown in List-
ing 2.
 What’s the problem with this code? 
We’re testing SchedulingContextSim-
pleImpl (which is the concrete class of 
SchedulingContext) indirectly. But we 
really mean to test the FNDTaskPuller 
class. This isn’t right. As we all know a 

unit test should never go outside of its 
own class boundary.
 Furthermore, it’s hard to control the 
states of the SchedulingContextSim-
pleImpl in order to test the different 
behaviors of FNDTaskPuller class.
 In practice, a common technique to 
overcome this kind of tight coupling is 
using mock objects, which can assist 
in separating unit tests. Mock objects 
themselves, however, require extra cod-
ing efforts. This extra coding effort can 
be significant, buggy, and cause mainte-
nance problems. What more? Develop-
ers have to replace mock objects with 
real classes at deployment.  
 The reason for this problem is 
the way we acquire the reference to 
the SchedulingContext object in the 
FNDTaskPuller class. In this case, the 
FNDTaskPuller class is asking for a refer-
ence to a SchedulingContext object. 
Explicitly.
 To get around this, we need to change 
the way we obtain an object reference. 
This is where Inversion of Control (IoC) 
comes into play.
 With IoC, objects obtain references 
to their dependent objects passively. 
The IoC container literally “injects” the 
dependency into the classes.  
 Now, we need an IoC container for 
our design to wire the objects. We have 
the choice of using an existing container 
product or building our own. Nor-
mally in-house framework building is 

considered a bad practice because of its 
complexity and inefficiency. However, 
we decided to do it anyway after care-
fully figuring out what we really needed. 
Some of the reasons are:
• We don’t intend to build a framework 

that supports complete IoC fea-
tures. Rather, our goal is to provide 
a feasible solution to our immediate 
problem: loosening up the coupling 
between SchedulingContext and 
other classes. At this point, some 
simple dependency wiring functions 
will do the trick.

• The team didn’t have enough expe-
rience with third-party containers 
when we started development, and 
the project timeline was a tight learn-
ing curve.  

• The team had to use some legacy 
code and worried that it would 
require some architectural modifica-
tions to integrate third-party contain-
ers with the legacy codes.

• It’s a good starting point for develop-
ers to get their feet wet on IoC con-
cepts and implementation.

 Our solution was to embed the 
simple dependency wiring functions 
in the ScheduleManager class, which, 
as mentioned, was already acting as 
the SMC “container.”  It also made 
sense to embed the IoC functions in 

 Figure 2 All classes have dependencies on the SchedulingContext class

 The intent of the Abstract Factory Pattern is 

to provide an interface for creating families of 

related or dependent objects without specify-

ing their concrete classes. The benefits of this 

pattern are that it isolates clients from concrete 

implementation classes, makes exchanging 

product families easy, and enforces the use of 

products from only one family.

The Abstract Factory Pattern

 Inversion of Control (IoC), also referred as Dependency Injection (DI), 

is a powerful pattern that can be applied in software design to reduce 

coupling between components. It’s a key feature in lots of lightweight 

containers, which help assemble components from different sources into 

a cohesive application. 

 IoC comes in three flavors – type 1, type 2, and type 3 IoCs; however, 

they’re more often referred to by their more descriptive names: interface 

inject, setter injection, and constructor injection, respectively.

 Nowadays many IoC container products exist such as  Spring and 

PicoContainer. 

Inversion of Control



JDJ.SYS-CON.com24 October 2006

this class. Because of the simplicity of 
construction injection, we refactored all 
the classes depending on the Schedul-
ingContext so that they were ready for 
constructor injection. Listing 3 gives the 
FNDTaskPuller class as an example.
 All we have to do in the ScheduleM-
anager class is to instantiate a Sched-
ulingContext object and assign it to 
classes that need a reference to it.  
If, some time in the future, a full IoC 
container is needed, we can just modify 
the ScheduleManager class.

Taking Care of Scattered Code
 While designing the data access 
layer, we foresaw that there would be 
a lot of scattered “plumping” code 
– code that doesn’t do anything related 
to business functions. They are only 
here to fulfill middleware functions: 
JNDI lookup, JDBC resource manage-
ment, exception handling, etc. This 
code will spread into almost all data 
access objects (DAOs) and, in most 
cases, this code is identical method 
to method. We all hate scattered code 

because it’s a maintenance nightmare, 
is error-prone, and makes code hard to 
understand.  
 List 2 is an example of a how we 
would have implemented our data ac-
cess methods without AOP.
 In Listing 4, only one line of the code 
is actually “doing something.” The rest 
is just “plumping” code. When “plump-
ing” code starts leaking into your appli-
cation, chances are you’ll find yourself 
hunting down all the application code 
when requirements change.  
 There’s one thing we can do. While 
OOP makes software design modular, 
AOP makes code modular. And modu-
larity is good.
 Once again, we faced the choice of 
using an existing AOP framework or 
building our own. We decided not to 
use any of these frameworks for the 
same reason why we didn’t use a IoC 
container. Instead, we separate the 
concerns programmatically in our 
code. Although this is not the most 
elegant, cleanest way, it’s the fastest, 
which, in our case, is a big gain.
 To separate the cross-cutting con-
cerns from the DAOs, we came up with 
the following class design:
• DAO classes. These are classes that 

implement data access functions. 
There can be an arbitrary number of 
DAO classes, and they’re POJOs.

• DAOFactory is the advice class. It 
implements the cross-cutting con-
cerns. It also defines pointcuts, in 
our case, all DAO methods. It does 
so by handing out proxy objects of 
the corresponding DAO classes.

 Figure 4 shows the class diagram. A 
client asks DAOFactory for a service 
provided by a particular DAO by 
passing in the DAO class name. Upon 
request, DAOFactory instantiates a 
proxy instance and a real instance 
of that class, and hands the proxy 
back. The client then makes calls on 
the proxy object, instead of the real 
instance of the DAO class, to consume 
the service.
 Because all calls are made through 
the proxy object, the proxy can inter-
cept the calls, wrapping the business 
methods with cross-cutting concerns. 
Listings 5, 6, 7, 8, and 9 show a simpli-
fied version of these classes. Note that 
MaterialDAO is just an example of 
many DAOs. 

Design Patterns

 Figure 3  Scheduling Context UML class diagram

 Aspect-Oriented Programming (AOP) attempts to aid programmers 

in the separation of concerns, specifically cross-cutting concerns, as an 

advance in modularization. The idea is to encapsulate concerns into 

separate features and minimize their functional overlaps as much as 

possible.

 Compared to procedural programming, OOP methodologies take a 

significant step towards separation of concerns.But there are concerns 

when OOP fails to separate, one of which is a concern that cuts  

across many modules of an application (hence the name cross-cutting 

concerns).

 The following definitions are based on Wikipedia (http://www.

wikipedia.org/).

Advice: describes a certain function, method, or procedure that is to 

be applied at a given join point of a program.

Join point: a point in the flow of a program.

Pointcut: a set of join points. Whenever the program execution reaches 

one of the join points described in the pointcut, the advice associated 

with the pointcut is executed.

 Java is full of frameworks, AOP included: : AspectJ, Spring, 

JBossAOP, etc.  

Aspect-Oriented Programming

 Figure 4  AOP class diagram



25October 2006JDJ.SYS-CON.com

 Note that with this design, the DAOs 
aren’t completely POJOs: Each DAO has 
to provide an interface and extend the 
AbstractDAO super-class.  The clients 
are also aware of the concrete imple-
mentation class. With this solution, 
however, we’re trying to land some-

where between the pain of living with 
scattered code and the burden of imple-
menting a complete AOP framework.

Conclusion
 In this article, I’ve just covered a small 
number of the design issues in our proj-

ect. It’s an even smaller part compared 
to the real world of software design. The 
idea is to present our way of thinking of 
design. We believe this kind of thinking 
will definitely familiarize the team with 
IoC and AOP concepts and prepare it for 
next step forward.   

Listing 1: FNDTaskPuller class
 public class FNDTaskPuller {
    private SchedulingContext ctx;
    // Other code

    public FNDTaskPuller () {
        this.ctx = SchedulingCtxFactory.getInstance().getSchedulingCon-
text();
        // Other code
    } 

    public boolean someBizMethod() {
        // Method implementation 
    }

    // Other code
}

Listing 2: FNDTaskPullerTest class
public void testSomeBizMethod () {
    FNDTaskPuller puller = new FNDTaskPuller();
    boolean result = puller.someBizMethod();

    // assertions goes after
    assertTrue(result);
    assertEquals(…);
}

Listing 3: CDBTaskPuller class gets ready for constructor injection
public class FNDTaskPuller {
    private SchedulingContext ctx;
    // Other code

    public void FNDTaskPuller (SchedulingContext ctx) {
        this.ctx = ctx;
    }

    // Other code
}

Listing 4: DAO method implementation without AOP
public void updateFNDData(FNDDataVO data) {
    Session session = null;
    Transaction tx = null;
    DataVO data = null;
    
    try {
        session = sessionFactory.openSession();
        tx = session.beginTransaction();
        
        session.update(FNDDataVO.class, data);

        session.flush();
        tx.commit();
    }
    catch (HibernateException e) {
        logger.debug(“error updating FND data.”, e);
        if (tx != null) tx.rollback();
    }
    finally {
        if (session != null) session.close();
    }
}

Listing 5: Example DAOFactory class
public class DAOFactory {
    // Code omitted here 

    /**
     * Create the proxy instance based on the class name
     */
    public Object getDAOService(String daoClassName) {
        Object proxy = null;
        try {
            Class c = Class.forName(daoClassName);
            InvocationHandler h = new HibernateInvocationHandler(daoCla

ssName);
            proxy = Proxy.newProxyInstance(c.getClassLoader(),
                                           c.getInterfaces(), h);
        } 
        catch (ClassNotFoundException e) {
            logger.error(“Error”, e);
        }
        return proxy;
    }
 
    public class HibernateInvocationHandler implements InvocationHandler 
{
        private String daoClassName;
        public HibernateInvocationHandler(String daoClassName) {
            this.daoClassName = daoClassName;
        }
  
        public Object invoke(Object proxy, Method method, Object[] args) 
            throws Throwable {
            
            Class c = Class.forName(daoClassName);
            AbstractDAO target = (AbstractDAO)c.newInstance();
   
            Session session = null;
            Transaction tx = null;
            Object result = null;
            try {
                session = sessionFactory.openSession();
                tx = session.beginTransaction();
                target.setSession(session);
    
                result = method.invoke(target, args);
    
                session.flush();
                tx.commit();
            }
            catch (HibernateException e) {
                logger.error(“Error. Transaction rolled back.”, e);
                tx.rollback();
            }
            finally {
                if (session != null) session.close();
            }
   
            return result;
        }
    }
}

Listing 6: Example AbstractDAO class
public class AbstractDAO {
    private Session session;

    public void setSession(Session s) {
        this.session = s;
    }
 
    public Session getSession() {
        return this.session;
    }
}

Listing 7: Example DAO Interface
public interface MaterialDAO {
    public MaterialVO load(String id);
}

Listing 8: Example DAO implementation
public class MaterialDAOImpl extends AbstractDAO implements MaterialDAO {
    public MaterialVO load(String id) {
        return (MaterialVO)this.getSession().load(MaterialVO.class, id);
    }
}

Listing 9 Example client code
DAOFactory f = new DAOFactory();
MaterialDAO dao = (IMaterialDAO)f.getDAOService(“MaterialDAOImpl”);
MaterialVO material = dao.load(“3”);



JDJ.SYS-CON.com26 October 2006

ecently I was able to talk to 
Tim Cramer, executive direc-
tor of tools at Sun, about 
NetBeans. Tim started in 

engineering doing supercomputer 
compiler work, moved to more gen-
eralized hardware compiler work, 
and naturally moved to JIT/dynamic 
compilers in Java during its first 
few years. Tim’s first management 
job was in the Java performance 
group, working to improve the base 
performance of Java SE and EE. He 
followed as the director of NetBeans 
in August of 2004 and is now the 
executive director for all Java tools 
at Sun. 

There seems to have been a lot of  
activity around NetBeans’ 5.0 release 
lately. What’s all the excitement about?
Tim Cramer: NetBeans 5.0 deliv-
ered a lot of new features that blew 
the Java developer away: the GUI 
Builder formerly known as Project 
Matisse, the code-aware collabora-
tion tools, the NetBeans Profiler,  
and Web framework support. In 
addition, we made improvements 
to existing features: better CVS 
support, improvements in the Java 
editor, etc. It’s a pretty compelling 
product release. With NetBeans 5.0 
we really reached a tipping point  
in the market: more and more  
users and more and more partners 
recognized that NetBeans increases 
their productivity by delivering  
open standards and innovative 
technology.

What’s the list of line items and  
features that the developers are  
working on for the next release?
TC: NetBeans 5.5 is our next re-
lease. It’s all about supporting Java 
EE 5 – which is a big advance over 
J2EE 1.4 – but we obviously also want 
to continue providing a great out-of-
box experience for Web development. 
I don’t know if you saw the Visual Web 
Development demo at JavaOne, but 
a subset of those features (originally 
part of Creator) will be in NetBeans 
5.5 and we also have a few other 
things coming down the pike: Subver-
sion support and new features in our 
GUI Builder will be available through 
the Update Center.

Where is the NetBeans market  
growing? Is it in the corporate space, 
and what geographies are big users?
TC: The NetBeans market is grow-

ing in all ways. We’ve increased 
our active users by a factor of six 
since we released NetBeans 4.0 in 
January 2005. We have over 120 
partners who are either building on 
our platform or using our IDE for 
development. Our CD Around the 
World Program has received orders 
and we’ve shipped CDs to over 40 
different countries. We are huge in 
Brazil where the community is local-
izing NetBeans 5.0. We have a large 
and growing community in China 
and look for some interesting things 
coming out of India this coming 
year.

NetBeans is Open Source.  
Do most of your contributors still  
come from the original Xelfi coders  
in the Czech republic, or you have you 
grown this to non-Sun employee ?
TC: Most of our developers are 
currently Sun employees. However, 
growing beyond this is one of our 
top priorities for the coming year. 
With the increased demand and 
interest in NetBeans, we just cannot 
continue to do it on our own. The 
community has some great ideas 
and developers and it would be silly 
if we didn’t take advantage of that 
brainpower. In the past six months, 
we’ve seen a dramatic increase in 
translations and plug-in develop-
ment from the community.

Do NetBeans users tend to be Java EE 
developers, Java SE, or Java ME?
TC: The thing about NetBeans is that 

Q & A

by Joe Winchester
NetBeans

R

Joe Winchester is  

a software developer

working on WebSphere

development tools  

for IBM in Hursley, UK.

joewinchester@sys-con.com

Interview with Tim Cramer, executive director of tools at Sun

Tim Cramer
Sun Microsystems

NetBeans 5.0 delivered a lot of new features that blew the Java  
developer away: the GUI Builder formerly known as Project Matisse,  

the code-aware collaboration tools, the NetBeans Profiler,  
and Web framework support”

“





JDJ.SYS-CON.com28 October 2006

it enables development end-to-end 
– from the phone handset to the big 
back-end server. You can create a 
Java ME, EE, or SE application with 
NetBeans. But, I’d have to say that  
we have more Java SE and EE devel-
opers but probably only because  
the market is larger in those areas. 
Our support for Java ME is very 
strong. The NetBeans Mobility Pack 
has gotten rave reviews and is ahead 
of the competition in almost every 
area.

Swing used to, and still does, get 
beaten up quite a bit over being an 
emulated widget toolkit. Is this an 
issue for NetBeans, and are there any 
plans for SWT tooling?
TC: Not an issue at all. People  
who are complaining about Swing 
have probably not used it in a  
long time. There have been HUGE 
improvements in JDK 5 (and there 
are more coming in JDK 6) that 
boosted performance and increased 
the ability of Swing applications  
to “look native” on a number of 
platforms. Being a 100% Swing  
application, NetBeans naturally 
benefits from those. We have no 
plans for SWT tooling as the value 
proposition is based on Swing,  
standards, and 100% Java. SWT  
is not a request that we hear from 
our users.

Do Java EE third-party frameworks like 
Hibernate have a very positive effect? 
How does NetBeans cope with  
third-party providers?
TC: The community has responded 
to the momentum behind NetBeans 
by creating all sorts of plug-in mod-
ules including those for third-party 
frameworks; we have third party 
plug-ins from both commercial 
and Open Source providers. And of 
course there are some third-party 
frameworks that are supported in 
NetBeans out-of-the-box: JUnit, 
Struts, and Ant.

For Swing how do you see popular 
frameworks like JGoodies being incor-
porated into NetBeans?
TC: We are open to anyone. If there’s 
interest from the JGoodies communi-
ty then we’d like to talk to them. Have 
them contact me or they can just join 
our NetBeans community and start 
contributing.

What are the plans regarding support 
for the data-binding effort being done 
by the Swing Labs team and other 
initiatives going on there being tooled 
for in NetBeans?
TC: Yes. Data binding is a hot topic 
in the Java community. As you know 
there’s JSR 295, titled Beans Binding, 
that’s pretty early on. Support for 
this JSR as well as the Swing Applica-
tion Framework ( JSR 296) is fairly 
high on the NetBeans priorities list. 
Some of this work was already shown 
at NetBeans Day at the JavaOne 
2006 conference. You can check out 
the NetBeans GUI Builder (formerly 
known as Project Matisse) roadmap 
here: http://form.netbeans.org/
roadmap.html

What are the plans for simplifying 
working with JTable in NetBeans?  
Other development languages score 
high on their ease-of-use development 
in this area whereas by contrast Java is 
quite difficult to use.
TC: A key part of any binding 
solution is the ease with which a 
developer can create a master detail 
application. A master detail applica-
tion typically involves a JTable and 
a host of components driven by the 
selection in the JTable. We realize 
the importance of this scenario, 
and plan to make it as natural as 
possible. Developers will be able to 
drag and drop database tables to 
create a table, binding the table and 
detail components to the selection. 
In addition, configuring an existing 
JTable will be trivial. Developers will 
easily be able to configure the head-

ers, number of columns, alignment, 
formatting, colors; you name it, we’ll 
offer it.

Microsoft understands that good 
development tools that hide complexity 
help the adoption of the language such 
as Visual Basic. Do you see the same 
relationship between NetBeans and 
Java?
TC: Absolutely. I like to say that 
NetBeans allows mere mortals to 
develop Java EE applications. This 
is one of our key benefits over other 
IDEs out there and we do it out-of-
the-box. Furthermore, the Java EE 
5 specification itself is focused on 
making thing simpler. But there are 
still lots of things an IDE can do to 
help with things like creation of  
specific classes, use of an entity 
manager, etc. And NetBeans IDE 
version 5.5 will provide all that  
and more.

What is going on in NetBeans in the 
Java EE space, especially with EJB 3.0 
and JSF?
TC: In NetBeans 5.5 we’ll have com-
plete support for EJB 3.0 and Java 
Server Faces 1.2. A developer will  
be able to create EJB 3.0 entity  
beans from an existing database au-
tomatically. Optionally, a developer 
can then have the IDE generate a 
basic JSF application automatically 
from those entity beans. So think 
about what this means: without 
writing any code you can create a 
basic create/read/update/delete 
(CRUD) Web application in just a 
few moments.

Eclipse recently broke away from  
IBM into its own independent foundation 
that attracted folks like BEA and Borland 
and there’s talk of Google joining. Does 
NetBeans have plans for a foundation 
structure to grow its base of contributing 
companies?
TC: No. We have seen a huge boost in 
interest from third-party companies 

Q & A

A key part of any binding solution is the ease with which 
 a developer can create a master detail application”“



29October 2006JDJ.SYS-CON.com

in NetBeans and they’re not at all put 
off by the lack of a foundation. We 
have over 120 partners. In some ways 
it actually gives us an advantage – I 
suspect that the number of conflict-
ing interests that Eclipse is trying 
to satisfy is straining its ability to 
innovate.

There was some hooha in the press 
recently where Scott McNealy said 
Oracle was backing NetBeans, and then 
Larry Ellison promptly denied it. What’s 
going on here?
TC: You really have to ask Larry El-
lison that.

Where do you see NetBeans and Java 
going in the next 10 years?
TC: Wow! That’s easy. Java will 
continue to be the premier develop-
ment platform across the globe and 
NetBeans will be the market leader 
in the tools development space. In 
the more immediate future, we have 
begun work on NetBeans 6.0 and we 
should have a beta out in the spring 
of 2007. This release will address 
some of the customer feedback we’ve 
gotten about enhancements to the 
editor. Stay tuned.

I’ve heard that NetBeans is going to 
offer design-time and high-level tools 
soon? What’s being provided and when 
can we see this in NetBeans?
TC: Yes, we’ve recently announced 
our plans to make available, very 
shortly, major elements of Sun Java 
Studio Enterprise, our premier 
enterprise-grade development 
environment for architecting and 
implementing enterprise applica-
tions, as an Open Source project in 
NetBeans.org. These will be released 
as the NetBeans Enterprise Pack. In 
fact, one can already download the 
preview version of the NetBeans 5.5 
Enterprise Pack to evaluate features 
that includes UML modeling, BPEL-
based process orchestration, and 
XML tooling prior to gaining access to 
the project in Open Source.

What level of UML support is being 
provided?
TC: The NetBeans Enterprise Pack 
will offer the comprehensive UML 
modeling capabilities as seen in Sun 
Java Studio Enterprise. Providing 
support for the UML 2.0 specifica-
tion, the modeling environment 
is fully synchronized in real-time 
with the underlying code and this 
synchronization is bi-directional in 
nature. We are specifically address-
ing the productivity concerns of 
the enterprise teams over the entire 
lifecycle going well into the mainte-
nance phase of a project by ensur-
ing that the bi-directional model to 
code synchronization is achieved 
without introducing “markers” into 
the code, allowing for real-time 
model changes to be affected when 
the underlying code is changed and 
vice versa. Of course, ease of use 
and productivity continues to be 
our single-minded endeavor and 
this is also reflected with the rich 
set of capabilities provided with the 
diagramming and model navigation 
capabilities.

You mentioned BPEL orchestration and 
XML capabilities. What can we expect 
to see in this space?
TC:  With the maturing of the SOA 
space, it’s imperative that the de-
velopment platform provides teams 
with the ability to rapidly orchestrate 
services. The NetBeans IDE already 
provides for easy creation of Web 
Services, so it’s a natural progression 
to allow for developers to quickly or-
chestrate them together. To that end, 
we’ve showcased in the NetBeans 
5.5. Enterprise Pack preview a BPEL-
based orchestration designer to 
develop the BPEL process orchestra-
tion and provided a BPEL runtime to 
deploy and test.
 In developing these Web Services 
we quickly realized that one of the 
biggest pain points for an enterprise 
team is XML document creation and 
manipulation. If we took into ac-

count that a real-world XML schema 
can potentially be as large as 17K 
lines of code then it becomes self-
evident that a lot of time is spent in 
creating the schema and getting it 
right. Therefore it’s imperative for a 
development environment to have 
the right XML tooling to improve 
productivity. The NetBeans 5.5 En-
terprise Pack preview showcases an 
XML editor and graphical XML docu-
ment analysis with built-in queries 
that allow for easy schema creation 
and debugging.

So where do you see the NetBeans 
platform going with all of this?
TC: Productivity as envisaged in a 
SOA project is no more about just 
the Java code and an individual de-
veloper. Productivity in this day and 
age is measured in the context of the 
entire team working and collaborat-
ing on creating services configuring 
and orchestrating them and this 
scenario introduces a lot of neces-
sary layers of technology, ranging 
from Web-based and Swing clients 
to Java EE-based Web Services and 
BPEL-based orchestrations. The 
NetBeans platform allows teams to 
navigate these layers and focus on 
the business domain at hand. With 
the modeling and BPEL tooling 
we’re letting the NetBeans commu-
nity achieve greater levels of team 
productivity.
 Couple this with all of the work 
already done in ensuring better 
team collaboration with the version 
control support and the numerous 
other innovations brought in via the 
GUI Builder, NetBeans Mobility Pack 
for developing mobile applications, 
NetBeans support for Java EE, and 
one thing stands out, that NetBeans 
drives productivity – not just for the 
developer but for the enterprise team 
at large.

Tim, thank you for your time.  

You’re welcome.   

The NetBeans Enterprise Pack will offer the comprehensive  
UML modeling capabilities as seen in Sun Java Studio Enterprise”“



JDJ.SYS-CON.com30 October 2006

utting AJAX functionality into your Web applica-
tion can be a daunting task when you’re first learn-
ing AJAX. After all you’re a Java programmer not a 
JavaScript programmer. It can also be very frustrat-
ing having to learn how the different browsers 

handle XMLHttpRequests. It’s been reported, however, that 
Internet Explorer 7 will support native XMLHttpRequests 
rather than requiring the developer to make ActiveX requests. 
This will make a Web developer’s life a lot easier.
 For Java Developers there are a number of different frame-
works/libraries that hide most of the complexity of develop-
ing AJAX-enabled Web applications. For this purposes of this 
article I’ll be using one of those libraries called DWR or Direct 
Web Remoting (http://getahead.itd.uk/dwr/). I chose DWR 
because I haven’t found another framework/library that’s 
easier to use or as flexible.
 DWR is an Open Source Java library, distributed under 
the Apache License version 2, that lets JavaScript call Java 
methods as if they were running in the browser, when in 
fact they’re running on the server. DWR isn’t tied to any one 
framework so it should work with any standard servlet con-
tainer.
 There are a number of different ways that you can use 
DWR, and the extensive documentation shows most of them. 
I’ve found that having Java methods return the HTML code 
that I want displayed is the easiest way to learn DWR. Using 
it this way also allows for the most flexibility in your AJAX 
designs.
 For this article I’ll show you how to use DWR to develop 
two simple AJAX-enabled Web applications. The first Web 
application will be an old “Hello World” application. This will 
show just how easy it is to write an AJAX-enabled Web ap-
plication with DWR. The second application will display the 
stats of the players on a baseball team. As you select a posi-
tion, the names of players that can play that position appear 
in a dropdown select box. Then you can select the player to 
see their stats. 
 You’ll need to start by downloading the DWR jar file 
from http://getahead.ltd.uk/dwr/ and copy it to the lib 
directory of your Web application. The location of the lib 
directory will vary depending on what servlet container 
you’re using. DWR is designed to work with any standard 
servlet container so feel free to use the one you’re most 
comfortable with.

 Once the DWR jar file is in the lib directory, you’ll need to 
configure the Web application to use it. Add the following 
lines to the Web.xml file, located in the WEB-INF directory:

    <servlet>

        <servlet-name>dwr-invoker</servlet-name>

        <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>

        <init-param>

            <param-name>debug</param-name>

            <param-value>true</param-value>

        </init-param>

    </servlet>

    <servlet-mapping>

        <servlet-name>dwr-invoker</servlet-name>

        <url-pattern>/dwr/*</url-pattern>

    </servlet-mapping>

 The <param-name> and <parm-value> tags between the 
<init-param> tag is optional but I’ve found the debug page 
to be extremely useful, however, you’ll want to make sure it’s 
turned off when you deploy the application. The debug page 
will be discussed in greater detail later in this article.
 Now you’ll need to create a dwr.xml file in the WEB-INF di-
rectory. This is the DWR configuration file and for the “Hello 
World” application you’ll only need to put the following lines 
in it.

<!DOCTYPE dwr PUBLIC 

     “-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN”

    “http://www.getahead.ltd.uk/dwr/dwr10.dtd”>

<dwr>

  <allow>

    <create creator=”new” javascript=”ajaxFunctions”>

      <param name=”class” value=”ajaxDemoHello.model.ajaxFunctions”/>

    </create>

  </allow>

</dwr>

 The DWR configuration file defines what classes DWR can 
create for remote use by JavaScript. In the example above, 
I defined “ajaxFunctions” to be used by JavaScript to call a 
Java class named ajaxFunctions in the ajaxDemoHello.model 
package. The name of the class doesn’t have to be the same 

Jon Hoffman is a systems  

operation manager. His  

primary responsibility is  

developing Web-based  

applications in Java. DWR  

has allowed Jon to turn Web 

sites and Web pages into  

Web applications.

hoffmanj@insanelycrazy.com

by Jon Hoffman

P

With Java and DWR

Feature

EASY  WAYAJAX TH
E



31October 2006JDJ.SYS-CON.com

name that you defined for JavaScript’s use; I just find it conve-
nient to keep the names the same.
 There are a couple of restrictions to the names that can be 
used for classes and methods. You can’t use any JavaScript reserve 
words. Most of the words that are reserved in JavaScript are also 
reserve words in Java so this is normally not an issue but some-
thing to keep in mind.
 You’ll also want to avoid overloaded methods because it’s hit 
or miss on which method gets called. This is because JavaScript 
doesn’t typecast its variables so DWR has to guess which over-
loaded method to call based on what the variable contains for 
data. 
 As an example, let’s say there are two methods that are over-
loaded, one accepting an int as the argument and the other ac-
cepting a String as the argument. You then try to call the method 
that accepts the String as the argument but the String contains 
“42.” DWR may interpret the 42 as the number 42 and call the 
method that accepts the int.
 The “Hello World” application will have two files, an index.html 
file that contains the static Web page of the Web application and 
the ajaxFunctions class that contains the methods that DWR will 
use to implement the AJAX functionality of the Web page shown 
in Listing 1. 
 Once the “Hello World” Web application is deployed, you can 
test the AJAX functionality by using the DWR’s debug page shown 
in Listing 2. To access the debug page you’ll want to point your 
Web browser to http://{your Web server}:{port}/{your Web app}/
dwr/, this will bring up a page that will look like Figure 1.
 All classes that are configured in the dwr.xml file will be listed 
here. To test a class, click on the class name. In this case, there’s 
only one class so click on the ajaxFunctions link and you should 
see a page that looks like the page in Figure 2.
 One of the things that makes DWR so easy is this debug page. 
Not only does it let you test the AJAX functionality of each method 
but it also tells you what JavaScript files to include in the Web 
page to access this class with DWR. 
 About halfway down the page, you’ll see the sayHello() method 
listed with an Execute button next to it. If you click the button, and 
everything is configured correctly, you’ll see the “Hello from AJAX 
and DWR” message appear next to the Execute button.
 The top of the debug page lists three scripts; two are listed as 
required and one is listed as optional for the ajaxFunctions class. 
The examples in this article need a function from the optional 
utility script, so you’ll have to put all three scripts in the index.
html page. These scripts should go in the head of the HTML page. 
You can simply cut each script line from the debug page and 
paste them into your code.
 To display the string returned from the sayHello method, we 
have to write a JavaScript function to act as the callback function 
for the sayHello method, but DWR makes this easy too. Listing 3 
contains this JavaScript function.
 This creates a JavaScript function called displayHello that 
accepts one argument (remember JavaScript doesn’t typecast 
its variables). The only line in the displayHello function uses the 
setValue function of the DWR utility script. This function takes the 
value of the second argument (displaystring) and alters the con-
tents of the element with the id of the first argument (message). 
This will work with almost all HTML elements that use an id tag.
 In the index.html page, change the line that displays “Click me” 
to the following line:

<a onClick=ʼajaxFunctions.sayHello(displayHello)ʼ>Click Me:</a>&nbsp;<div 

id=”messages”>

 Clicking on the “Click Me:” will trigger the sayHello method 
of the ajaxFunctions class. You may remember that the sayHello 
method doesn’t accept an argument, but the line above passes one. 
The first argument in a method that’s called with DWR is the JavaS-
cript callback function that the output of the method is passed to. 
In this case the output of the sayHello method is passed to the dis-
playHello javaScript function that we created above. The sayHello 
method doesn’t accept any arguments but if it did the arguments 
would be added after the callback function.
 The <div id=”messages”> at the end of the line is where the 
DWRUtil.setValue will put the hello message. The new index.html 
file is in Listing 4. If the JavaScript files to include (those listed on 
the debug page) are different than the ones in Listing 4, change 
them to match the ones on the debug page.
 With this new index.html deployed you’ll be able to click on the 
“Click Me:” and the hello message will appear. 
 Congratulations, you’ve created your first AJAX-enabled Web 
application. 
 Here’s a checklist of what’s needed to integrate DWR with a Web 
application:
I.  Copy the dwr.jar file to the lib directory of the Web application.
II.  Edit the web.xml file so the Web application will 
  recognize DWR.
III. Create the dwr.xml file to configure DWR.
IV.  Write the Java class that DWR will use for the AJAX   

 functionality.
V.  Add the AJAX functionality to your Web application.

 Figure 1

 Figure 2



JDJ.SYS-CON.com32 October 2006

 That’s really all that’s needed to develop an AJAX-enabled 
Web application with DWR.
 Now that you’ve seen how easy it is to add AJAX functional-
ity to your Web application with DWR, let’s create the baseball 
statistics Web application.  
 When the application is first started, a list of available posi-
tions appears to the left of the screen that can be clicked on. 
The page should look like Figure 3.
 After you click on a position, a list of players that are avail-
able for that position will appear in a dropdown selector. 
Figure 4 shows what it looks like if you selected center fielder.
 Once a player is selected, his statistics will appear. Figure 5 
shows what this looks like.
 Now that we have a basic idea of how the Web application 
is supposed to function, it’s time to start the development. 
Steps one and two will be the same for almost all applications. 
Before you go live with the Web application, just remember to 
disable the debug page.
 For the baseball statistics Web application, step three will 
also be the same as the “Hello World” application. I usually 
name the Java class that handles the AJAX functionality aja-
xFunctions.java just to keep it consistent between applica-

tions. Below is the dwr.xml file for the baseball statistics Web 
application:

<!DOCTYPE dwr PUBLIC

    “-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN”

    “http://www.getahead.ltd.uk/dwr/dwr10.dtd”>

<dwr>

  <allow>

    <create creator=”new” javascript=”ajaxFunctions”>

      <param name=”class” value=”com.thelinuxdog.model.ajaxFunc-

tions”/>

    </create>

  </allow>

</dwr>

 Step four is to develop the Java class that DWR will use for 
the AJAX functionality. Before this class can be developed, the 
class that will handle all the data access functions needs to be 
written. Normally this class would use a database to store the 
data, but for simplicity’s sake this class will store the data in an 
array of Strings. Listing 5 contains the dataFunctions class.
 The dataFunctions class contains two methods. The first 
method, returnNames, returns a list of names and the number 
of the players for a given position. The position is passed to 
the method through its only argument.
 The second method, returnStats, returns an array of Strings 
that contains the statistics for the player with a given number. 
The player’s number is passed to the method through its only 
argument. 
 Listing 6 contains the ajaxFunctions class.
 The ajaxFunctions class also contains two methods. The 
first method, displayNames, displays the dropdown box that 
contains the players for a given position. The method accepts 
a String that contains the position that you want to obtain the 
list of players as its only argument. 
 The displayNames method begins by getting a list of play-
ers who can play the given position from the returnNames 
method of the dataFunctions. It then begins to build the 
HTML code for the dropdown box by defining a form with a 
name of playerform.
 The next line defines the select box. The onChange 
function of the select box calls the displayStats method of 
the ajaxFunctions class with DWR. This is very similar to 
the onClick method in the “Hello World” Web application 
except we’re passing two arguments this time because the 
displayStats method will accept one argument. Keep in 
mind the first argument passed to a method with DWR is the 
JavaScript callback function that will accept the output of 
the Java method. The second argument of the function uses 
this.options[this.selectedIndex].value to get the number of 
the selected player and that number is what’s passed to the 
displayStats method.
 The options for the select box are then added using the 
list of names and numbers of the players that were returned 
from the returnNames method. The value of the option is the 
player’s number and the element is the player’s name. The 
String that represents the HTML code for the select box is then 
returned, which DWR will then pass to the JavaScript callback 
function to display on the Web page.

Feature

 Figure 3

 Figure 4



��������������������������������������������������������������������

����������������������������������������������������������������������������

AJAX for Java

������������������������������������
�������������������������������������������������
���������������������������������������������
�������������������������������������

�������������������������������

����������������������������������
�������������������������������������
���������������������������������������������������������
���������������������������������������������

�����������������������������������������������

�
�
�
�



JDJ.SYS-CON.com34 October 2006

 The second method in the ajaxFunctions class is called 
displayStats. This method returns the HTML code to display 
the statistics for the player with the number that’s passed to 
the displayStats method in its only argument. This function is 
similar to the returnNames method. It begins by getting the 
data needed from the returnsStats method of the dataFunc-
tions class and then builds the HTML code to display the 
statistics. The method then returns the String that contains 
the HTML code to display the statistics.
 The Web application can be deployed at this point to test 
the ajaxFunctions class with the DWR debug page. After the 
application is deployed, point the Web browser to http://{your 
Web server}:{port}/{your Web app}/dwr/ and you should see the 
debug page if everything is configured correctly. If you click on 
the ajaxFunctions link, you’ll be taken to the ajaxFunctions de-
bug page, which will also list the JavaScript files needed by the 
Web application to use the ajaxFunctions class with DWR. List-
ing 7 contains the index.jsp file for the baseball statistics Web 
application. Remember to substitute the links to the JavaScript 
files with the ones from your ajaxFunctions debug page.
 You may have noticed that in the ajaxFunctions class 
the displayStats method was called by the displayNames 
method. Calling an AJAX method from another AJAX method 
is perfectly fine under one condition, the JavaScript functions 
needed by the AJAX method has to be on the static HTML 
page and not created by the AJAX method. For example, when 
the displayStats method is called it sends the output to the 
JavaScript callback function called displayStatsJS. Therefore, 

the displayStatsJS function needs to be in the static HTML 
page, or in this case the static jsp page called index.jsp.
 That is all there is to developing an AJAX-enabled Web ap-
plication with DWR. The next question is “what do you do if 
the AJAX functionality doesn’t function properly?” The debug 
page created by DWR is the first tool that I use for debugging 
my AJAX-enabled applications. It’s good for testing if DWR is 
configured properly and if the functions called through DWR 
are working properly.
 If everything appears to work properly through the debug 
page but the AJAX part of your Web application still isn’t work-
ing, you’ll need to know a little bit of JavaScript to debug your 
application. The most useful JavaScript command for debug-
ging is the alert command that pops up an alert window. For ex-
ample, the command alert(“Hello”); pops up an alert box with 
the word “Hello” in it. This can be useful to see if you’re getting 
to your callback functions and to test what’s in the variables.
 If I were to change the displayNameJS javaScript function to:

function displayNamesJS(data)

            {

       alert(data);

                DWRUtil.setValue(“names”,data);

            }

everytime the displayNamesJS function is called, an alert 
pop-up box that contains the HTML code that’s going to be 
displayed on the page would appear
 As you can see it’s pretty easy to develop AJAX-enabled Web 
applications with DWR. DWR handles all of the compatibility 
issues with the different browsers and the asynchronous calls 
to the server so all you have to do is write the Java classes that 
DWR will use.
 I’ve been using DWR version 1.x for a while now in my de-
velopment environment and found it to be very stable. They 
are in the process of developing a version 2 that will introduce 
“Reverse Ajax,” which will allow Java on the server to send 
JavaScript to the client.
 In this article I showed how to develop AJAX-enabled Web 
applications by having DWR pass HTML code back to the 
browser. To me this is the easiest and most flexible way of using 
DWR, but not the only way. The DWR Web site has very good 
documentation and examples (http://getahead.itd.uk/dwr/). 
I’d really recommend that if you plan on using DWR in your 
production environment that you spend a little time reading 
the full documentation to find the best way of using DWR for 
your project.   

Feature

 Figure 5

Listing 1:  ajaxFunctions class
package ajaxDemoHello.model;

public class ajaxFunctions {

    public ajaxFunctions() {
    }
    
    public String sayHello() {
        String returnString=””;
        returnString += “Hello from AJAX and DWR”;
        return returnString;
    }
}

Listing 2: index.html file without any AJAX functionality.
<html>

   <head>

       <title>HelloWorld</title>

    </head>

    <body>

                Click Me

    </body>

</html>
–continued on page 32



Experience for yourself

...why Yakov says                                        is “Very potent”. 

Adobe thanks Java Developer’s Journal and Yakov Fain for selecting 
Adobe Flex 2 for the Editors’ Choice award. Better By Adobe.

www.adobe.com/go/try_jdjchoice

™

Adobe, the Adobe logo, Flex, and Flex Builder are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.



JDJ.SYS-CON.com36 October 2006

Feature

Listing 3

<script type=ʼtext/javascriptʼ>

     function displayHello(displaystring) 

     { 

           DWRUtil.setValue(“message”,displaystring);

     }

</script>

Listing 4

<html>

  <head>

    <title>HelloWorld</title>

  <script type=ʼtext/javascriptʼ src=ʼ/ajaxDemo/dwr/interface/ajax-

Functions.jsʼ></script>

  <script type=ʼtext/javascriptʼ src=ʼ/ajaxDemo/dwr/engine.jsʼ></

script>

  <script type=ʼtext/javascriptʼ src=ʼ/ajaxDemo/dwr/util.jsʼ></script>

  <script type=ʼtext/javascriptʼ>

    function displayHello(displaystring)

    {

         DWRUtil.setValue(“message”,displaystring);

    }

  </script>          

    

  </head>

  <body>

        <a onClick=ʼajaxFunctions.sayHello(displayHello)ʼ>Click Me:</

a>&nbsp;<div id=”message”>

  </body>

</html>

Listing 5: dataFunctions.java

package com.thelinuxdog.model;

import java.util.ArrayList;

import java.util.List;

/**

 *

 * @author Jon Hoffman

 */

public class dataFunctions {

    String[][] data = {

        {“0”,”Jason Catcher”, “c”, “.307”, “.345”, “10”, “87”, “76”, 

“0”},

        {“1”, “Doug Catcher”, “c”, “.202”, “.290”, “1”, “15”, “25”, 

“0”},

        {“2”, “Kevin infielder”, “1b,3b”, “.320”, “.410”, “2”, “95”, 

“76”, “2”},

        {“3”, “David infielder”, “1b” ,”.302”, “.378”, “43”, “140”, 

“102”, “0”},

        {“4”, “Mark second”, “2b”, “.298”, “.315”, “10”, “79”, “89”, 

“5”},

        {“5”, “Alex second”, “2b,ss”, “.250”, “.290”, “2”, “10”, 

“22”, “4”},

        {“6”, “Alex short”, “ss”, “.210”, “.250”, “9”, “45”, “50”, 

“2”},

        {“7”, “Mike Third”, “3b”, “.289”, “.330”, “25”, “70”, “80”, 

“0”},

        {“8”, “Manny Left”, “lf,rf”, “.325”, “.414”, “42”, “143”, 

“101”,”1”},

        {“9”, “Wily center”, “lf,cf,rf”, “.287”, “.335”, “25”, “67”, 

“56”, “5”},

        {“10”, “Coco center”, “lf,cf,rf”, “.298”, “.367”, “10”,”78”, 

“45”,”22”},

        {“11”, “Trot right”, “cf,rf”, “.289”, “.330”,”15”, “76”, 

“67”, “0”},

        {“12”, “Curt Ace”, “sp”, “3.14”, “1.21”,”21”, “5”, 

“0”,”212”},

        {“13”, “Josh Ace”, “sp”, “3.25”, “1.14”, “20”, “6”, 

“0”,”189”},

        {“14”, “Tim Starter”, “sp”, “4.19”,”1.45”, “15”, “7”, “0”, 

“140”},

        {“15”, “Johnaton SuperCloser”, “rp”, “0.89”, “0.50”, “4”, 

“0”, “55”, “110”}

        

    };

    

    /** Creates a new instance of dataFunctions */

    public dataFunctions() {

    }

    public List returnNames(String position)

    {

        List returnList = new ArrayList();

        for (int i=0; i<data.length; i++)

        {

            String[] pos = data[i][2].split(“,”);

            for (int j=0; j<pos.length; j++)

            {

                if (pos[j].equalsIgnoreCase(position))

                {

                    returnList.add(data[i][0]);

                    returnList.add(data[i][1]);

                }

            }

        }

        return returnList;

    }

    

    public String[] returnStats(String number)

    {

        String[] returnString = null;

        for (int i=0; i<data.length; i++)

        {

             if (data[i][0].equalsIgnoreCase(number))

                    returnString = data[i];

        }

        return returnString;

    }

    

}

Listing 6: ajaxFunctions.java

package com.thelinuxdog.model;

import java.util.List;



37October 2006JDJ.SYS-CON.com

public class ajaxFunctions {

     public ajaxFunctions() {

    }

    

     public String displayNames(String pos) {

        String returnString = “”;

        dataFunctions df = new dataFunctions();

        List names = df.returnNames(pos);

        returnString += “<form name=playerform>”;

        returnString += “<select name=player onChange=ʼajaxFunctions.

displayStats(displayStatsJS,this.options[this.selectedIndex].value)ʼ>”;

        returnString += “<option value=1000>Select Player</option>”;

        for (int i=0; i<(names.size()/2); i++)

        {

            int key=i*2;

            returnString += “<option value=”+ names.get(key) +”>” + 

names.get(key+1) + “</option>”;

        }

        returnString += “</select>”;

        return returnString;

    }

    

    public String displayStats(String num) {

        

        String returnString = “”;

        if (!num.equalsIgnoreCase(“1000”))

        {

            String fieldsPitchers[] = {“#”,”name”,”positions”, “ERA”, 

“WHIP”, “W”,”L”,”Saves”,”K”};

            String fieldsHitters[] = {“#”,”name”,”positions”,”AVG”,”O

BP”,”HR”,”R”,”RBI”,”SB”};

            dataFunctions df = new dataFunctions();

            String[] stats = df.returnStats(num);

            returnString += “<table width=90% border=0><tr>”;

        

            for (int i=0; i<9; i++)

            {

                if(stats[2].startsWith(“sp”) || stats[2].

startsWith(“rp”))

                    returnString += “<th>” + fieldsPitchers[i] + 

“</th>”;

                else

                    returnString += “<th>” + fieldsHitters[i] + “</

th>”;;

            }   

            returnString += “</tr><tr>”;

            for (int i=0; i<stats.length; i++)

                returnString += “<th>” + stats[i] + “</th>”;

            returnString += “</tr></table>”;

        }

        return returnString;

    }

}

Listing 7: index.jsp

<html>

    <head>

        <title>stats</title>

        <script type=ʼtext/javascriptʼ src=ʼ/ajaxdemo1/dwr/interface/

ajaxFunctions.jsʼ></script>

        <script type=ʼtext/javascriptʼ src=ʼ/ajaxdemo1/dwr/engine.

jsʼ></script>

        <script type=ʼtext/javascriptʼ src=ʼ/ajaxdemo1/dwr/util.jsʼ></

script>

        <script type=ʼtext/javascriptʼ>

            

            function displayNamesJS(data)

            {

                DWRUtil.setValue(“names”,data);

            }

            

            function displayStatsJS(data)

            {

                DWRUtil.setValue(“stats”,data);

            }

        </script>

    </head>

    <body>

        <table width=90% border=1>

            <tr>

            <th width=30% valign=top>

                <table width=90% border=0>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”sp”)ʼ>Starting Pitcher</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”rp”)ʼ>Relief Pitcher</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”c”)ʼ>Catcher</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”1b”)ʼ>First Basemen</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”2b”)ʼ>Second Basemen</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”3b”)ʼ>Third Basemen</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”ss”)ʼ>Shortstop</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”lf”)ʼ>Left Fielder</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”cf”)ʼ>Center Fielder</a></th></tr>

                    <tr><th><a onClick=ʼajaxFunctions.displayNames 

(displayNamesJS,”rf”)ʼ>Right Fielder</a></th></tr>

                </table>

            </th>

            <th width=70% valign=top>

                <table width=90% border=0>

                    <tr><th><div id=names /></th></tr>

                    <tr><th><hr width=100%></th></tr>

                    <tr><th><div id=stats /></th></tr>

                </table>

            </th>

            

        </table>

    

    </body>

</html>



JDJ.SYS-CON.com38 October 2006

he persistence model introduced in EJB 3.0 as 
a replacement for entity beans is known as the 
Java Persistence API ( JPA). The JPA borrows 
from both proprietary and open source models, 
such as Oracle TopLink, Hibernate, Spring, and 

other frameworks, which have gained traction as popular 
alternatives to the often heavyweight and cumbersome 
persistence directives required by earlier EJB revisions. 
Among the new features introduced in EJB 3.0 through 
the JPA is support for entity inheritance.  In this article, 
we will examine inheritance strategies supported by 
the JPA and apply these strategies to a simple entity 
hierarchy, exploring the strengths and weaknesses of 
each approach. This comparison is intended to help 
you understand how to set up entity hierarchies, and to 
decide which mapping approach to take for the entity 
hierarchies in your own application.

Mapping JPA Entity Inheritance Hierarchies
 Java has supported single-class inheritance — in 
which a non-interface class can extend a single other 
class — since its inception. While it’s been common 
practice to exploit the code reuse and polymorphism 
benefits of inheritance in many areas of the business 
domain, data inheritance hasn’t been well handled in 
the EJB persistence domain until now. This has been a 
major shortcoming, since in the real world, data is often 
hierarchical, and the lack of standard, built-in support 
for the inheritance of data objects has required countless 
workarounds and headaches. Leveraging the ease of use 
of Java SE annotations, JPA delivers declarative support 
for defining and mapping entity inheritance hierarchies, 
including abstract entities and polymorphic relationships 
and queries.

JPA Entity Inheritance Mapping Strategies
 JPA provides declarative support for three main 
implementation strategies that dictate how the entities 
in a hierarchy map to underlying tables. To illustrate how 
these three strategies are manifested in code, Figure 1 
shows a sample entity hierarchy that demonstrates both 
inheritance and polymorphic relationships.
 In Figure 1, the Person entity serves as the root class 
in an entity hierarchy, and is extended by the Employee

entity. Employee is further specialized to produce two 
other entities: FullTimeEmployee and PartTime-
Employee.

Object/Relational Inheritance Mapping Strategies
 Now that we’ve defi ned our entity hierarchy, let’s look at 
how each of the three O/R strategies supported natively by 
JPA can be used to map this Person entity hierarchy, and the 
associated Address entity, to a relational schema. Here’s a 
summary of each strategy defi ned by the InheritanceType
enum:

public enum InheritanceType

{SINGLE_TABLE, JOINED, TABLE_PER_CLASS};

Raghu R. Kodali is a consulting 

product manager and SOA 

evangelist for Oracle Application 

Server. He leads next-generation 

SOA initiatives and J2EE feature 

sets for Oracle Application Server, 

with particular expertise in EJB, 

J2EE deployment, Web services, 

and BPEL. He holds a Masters 

degree in Computer Science and 

is a frequent speaker at technol-

ogy conferences. Raghu is also 

a technical committee member 

for the OASIS SOA Blueprints 

specifi cation, and a board 

member of Web Services SIG in 

OAUG. He maintains an active 

blog at Loosely Coupled Corner 

(www.jroller.com/page/

raghukodali).

raghu.kodali@oracle.com

by Raghu R. Kodali and Jonathan Wetherbee

T

Understanding and comparing 
inheritance hierarchies in Java Persistence API

Feature

 Figure 1 An entity type hierarchy, rooted in the base entity Person, showing 

relationships to entities both inside and outside the hierarchy

Inheritance Hierarchies                      in JPA



39October 2006JDJ.SYS-CON.com

• SINGLE_TABLE: Single-table-per-class inheritance 
hierarchy. This is the default strategy. The entity 
hierarchy is essentially flattened into the sum of its 
fields, and these fields are mapped down to a single 
table.

• JOINED: Common base table, with joined subclass 
tables. In this approach, each entity in the hierarchy 
maps to its own dedicated table that maps only the 
fields declared on that entity. The root entity in the 
hierarchy is known as the base table, and the tables 
for all other entities in the hierarchy join with the base 
table. 

• TABLE_PER_CLASS: Single-table-per-outermost con-
crete entity class. This strategy maps each leaf (i.e., 
outermost, concrete) entity to its own dedicated table. 
Each such leaf entity branch is flattened, combining 
its declared fields with the declared fields on all of its 
super-entities, and the sum of these fields is mapped 
onto its table.

Single-Table-per-Class Inheritance Hierarchy
 The default inheritance mapping strategy is SINGLE_
TABLE in which all the entities in the class hierarchy map 
onto a single table. A dedicated discriminator column 
on this table identifies the specific entity type associated 
with each row, and each entity in the hierarchy is given a 
unique value to store in this column. By default, the dis-
criminator value for an entity is its entity name, although 
an entity may override this value using the @Discrimi-
natorValue annotation. This approach performs well for 
querying, since only a single table is involved, and if your 
type hierarchy can abide by the practical limitations, this 
is probably the best approach to use. Figure 2 shows a 
diagram of a schema that maps our example entities using 
the SINGLE_TABLE strategy. 
 All the properties across the entity hierarchy rooted 
by the Person entity map to columns on a single table, 
CH04_ST_PERSON. This table holds a foreign key 
reference, bound to the HOME_ADDRESS column, to 
CH04_ST_ADDRESS, which is mapped to the Address 
entity. This column also has a unique key constraint, 
ensuring that each row in the CH04_ST_ADDRESS
table corresponds to at most one row in the CH04_ST_
PERSON table. It also holds a foreign key reference, 
using the MANAGER column, back to itself. This foreign 
key isn’t constrained to be unique, indicating that mul-
tiple rows may hold the same value in their MANAGER 
column.
 Listings 1 through 4 show how the entities in the 
Person hierarchy are mapped using the SINGLE_TABLE 
inheritance strategy. The strategy is declared on the root 
entity in the hierarchy and applies to all sub-entities in 
the hierarchy as well. 
 Let’s take a look at the annotations that were 
introduced.

The @DiscriminatorColumn Annotation
 By default, the persistence manager looks for a column 
named DTYPE in the root entity’s table (CH04_ST_PER-
SON, in this case). In our example, we’ve named the 
discriminator column TYPE, so we explicitly annotate 
this setting, using the @DiscriminatorColumn(name = 

“TYPE”) annotation. Were we to use a column named 
DTYPE, we could have skipped this annotation altogether 
and accepted the default value.

The @DiscriminatorValue Annotation
 Each concrete entity declares, either explicitly or by 
tacitly accepting the default, a unique discriminator value 
that serves to identify the concrete entity type associated 
with each row in the table. The discriminator value defaults 
to the entity name, and in this example we’ve accepted this 
default value for each of the entities in the hierarchy.

Figure 2 The CH04_ST_PERSON table holds all entity instances in the entity hierarchy rooted by Person. The CH04_

ST_ADDRESS table holds the associated Address instances

 Figure 3 A schema that maps our example entities using the JOINED strategy. Each entity in the hierarchy 

has its own table to persist its declared fields. The table CH04_JOIN_ADDRESS holds associated 

Address instances

Understanding and comparing 
inheritance hierarchies in Java Persistence API

Inheritance Hierarchies                      in JPA



JDJ.SYS-CON.com40 October 2006

Pros and Cons of the SINGLE_TABLE Strategy
 Table 1 offers a look at some of the strengths and  
weaknesses of the SINGLE_TABLE entity inheritance 
strategy.

Common Base Table with Joined Subclass Tables
 In the JOINED strategy, each entity in the hierarchy intro-
duces its own table but only to map fields that are declared 
on that entity type. The root entity in the hierarchy maps to a 
root table that defines the primary key structure to be used by 
all tables in the entity hierarchy, as well as the discriminator 
column and optionally a version column. Each of the other 
tables in the hierarchy defines a primary key that matches the 
root table’s primary key, and optionally adds a foreign key con-
straint from their ID column(s) to the root table’s ID column(s). 
The non-root tables don’t hold a discriminator type or version 
columns. Since each entity instance in the hierarchy is repre-
sented by a virtual row that spans its own table as well as the 
tables for all of its super-entities, it eventually joins with a row 
in the root table that captures this discriminator type and ver-
sion information. Querying all the fields of any type requires a 
join across all the tables in the supertype hierarchy.
 Figure 3 illustrates the schema that maps our entities 
using the JOINED inheritance strategy. As in the previous ex-
ample, we’ve prefixed the tables with the strategy indicator, 
in this case CH04_JOIN_.
 Listings 5 shows how the abstract entity in the Per- 
son hierarchy is mapped using the JOINED inheritance 
strategy. 

Pros and Cons of the JOINED Strategy
 Table 2 offers a look at some of the strengths and weak-
nesses of a JOINED entity inheritance strategy.

Single-Table-per-Outermost Concrete Entity Class
 This inheritance mapping option maps each outermost 
concrete entity to its own dedicated table. Each table maps 
all of the fields in that entity’s entire type hierarchy; since 
there’s no shared table, no columns are shared. The only table 
structure requirement is that all tables must share a common 
primary key structure, meaning that the name(s) and type(s) 

of the primary key column(s) must match across all tables 
in the hierarchy. For good measure, Figure 4 illustrates our 
third type hierarchy using the joined table approach, which 
demonstrates the use of the single-table-per-outermost entity 
subclass strategy. The tables are required to share nothing in 
common except the structure of their primary key, and since 
the table implicitly identifies the entity type, no discriminator 
column is required. With this inheritance mapping strategy, 
only concrete entities — FullTimeEmployee, PartTimeEm-
ployee, and Address in our example — require tables.
  Listing 6 shows how the Person entity is mapped and 
annotated.

Pros and Cons of the TABLE_PER_CLASS Strategy
 Table 3 offers a look at some of the strengths and weak-
nesses of the TABLE_PER_CLASS entity inheritance strategy.

Comparison of O/R Implementation Approaches
 Now that we’ve explored the three inheritance mapping 
implementations, let’s look at some of the characteristics 
of a class inheritance hierarchy to consider when choosing 
which implementation approach to use for your type hi-
erarchies. The following list contains subjective questions 
about your own entity hierarchies. They don’t have precise 
answers, but are meant to stimulate design consideration 
when building your application.
• Class hierarchies can be static, with a fixed number of 

sub-types, or they can be dynamic, with varying numbers 
of sub-types. How often will you need to incorporate new 
sub-types into your hierarchy?

• Hierarchies can be deep, with lots of sub-classes, or they can 
be shallow, with only a few. How granular is your hierarchy?

• The types in a hierarchy may diverge greatly, with 
very different sets of properties on the sub-classes than 
the base class, or with very little difference in properties.

• How much do the persistent property sets of your entities 
diverge from one another? Will other entities define rela-
tionships with classes in this type hierarchy, and if so, will 
the base classes frequently be the referenced type?

• Will types in this hierarchy be frequently queried, updated, 
or deleted? How will the presence or absence of SQL JOIN or 
UNION operations impact your application’s performance?

• During the life of your application, how frequently will you 
be updating the structure of the type hierarchy itself? The 
impact of this type of change varies for each inheritance 
strategy, with considerations that include the following:
– Adding or removing new types to the hierarchy (as 

when refactoring classes).
– Adding, removing, or modifying fields on an entity in 

the hierarchy.
– Adding, removing, or modifying relationships involving 

types in this hierarchy.

Summary
 To support entity inheritance hierarchies, the JPA offers 
three mapping approaches for developers to choose from:
•  SINGLE_TABLE: Single-table-per-class inheritance hierarchy
• JOINED: Common base table, with joined subclass tables
• TABLE_PER_CLASS: Single-table-per-outermost concrete 

entity class

Feature

 Table 1 Pros and Cons of a SINGLE_TABLE Inheritance Strategy

Considerations Pros and Cons
Design-time considerations This mapping approach works well when the type hierarchy  
 is fairly simple and stable. Adding a new type to the hierar- 
 chy and adding fields to existing supertypes simply involves  
 adding new columns to the table; though in particularly  
 large deployments, this may have an adverse impact on  
 the index and column layout inside the database. If your  
 hierarchy may outgrow the column limitations of a single  
 table, which is typically 256 columns, or if for some reason  
 you need to map more than one very large field to inline  
 LOB (Locator Object) columns, you may have to introduce  
 an @SecondaryTable mapping. In this case, it might be  
 wiser to adopt one of the approaches that follow.

Performance impact This strategy is very efficient for querying across all types in  
 the hierarchy, or specific types. No table joins are required  
 by the internal persistence framework—only a WHERE  
 clause listing the type identifiers. In particular, relationships  
 involving types that employ this mapping strategy are very  
 performant.

Jonathan Wetherbee is a consult-

ing engineer and tech lead 

for EJB development tools on 

Oracle’s JDeveloper IDE. He has 

over 10 years of experience in 

development at Oracle, working 

on a variety of O/R mapping 

tools with responsibility for 

Oracle’s core EJB toolset since 

EJB 1.1. Before joining Oracle’s 

development staff, Jonathan was 

a product manager for Oracle’s 

CASE (Computer Aided Software 

Engineering) tools. In 1999 he 

received a patent for his work on 

integrating relational databases 

in an object-oriented environ-

ment. Jonathan received a 

bachelor of science in cognitive 

science from Brown University.

jon.wetherbee@oracle.com





JDJ.SYS-CON.com42 October 2006

 In this article we took a sample entity inheritance 
hierarchy and explored how to map the entities in this 
hierarchy using each of these three inheritance mapping 
strategies.  We also examined some of the strengths and 
weaknesses in each strategy, to help you choose the ap-
proach that best serves each of the entity hierarchies in 
your application.
 Now that you are familiar with how to set up an entity 
inheritance hierarchy in the JPA, you may wish to explore 
the many related areas also introduced in the JPA, includ-
ing polymorphic relationships and JPQL queries, the 

use of non-entity mapped superclasses, and composite 
primary keys.  For an examination  of these features,  
with code samples, check out Beginning EJB 3 Applica-
tion Development:  From Novice to Professional (Apress, 
2006).  

Feature

 Table 2 Pros and Cons of the JOINED Inheritance Strategy

Considerations Pros and Cons
Design-time considerations Introducing a new type to the hierarchy, at any level, simply  
 involves interjecting a new table into the schema. Subtypes  
 of that type will automatically join with that new type at  
 run time. Similarly, modifying any entity type in the hierar- 
 chy by adding, modifying, or removing fields affects only  
 the immediate table mapped to that type. This option pro- 
 vides the greatest flexibility at design time, since changes  
 to any type are always limited to that type’s dedicated  
 table.

Performance impact This approach does not suffer from the use of UNION   
 operations, but inherently requires multiple JOIN operations  
 to perform just about any query. Querying across all   
 instances initially involves only a single query of the top 
 most base entity’s table to retrieve a list of all primary keys  
 of instances in the hierarchy. Due to the presence of the  
 discriminator column in the base entity’s table, resolution  
 of these instances into entity classes can be efficient,   
 depending on the lazy loading strategies employed by the  
 persistence manager implementation.

 Figure 4 A schema that maps our example entities using the TABLE_PER_CLASS strategy. Concrete leaf 

entities are mapped to dedicated tables that contain columns that map all of their declared and 

inherited fields

 Table 3 Pros and Cons of a TABLE_PER_CLASS Inheritance Strategy

Considerations Pros and Cons
Design-time considerations As new outermost concrete types are intro-
 duced into the hierarchy, new tables are   
 added. This is nice because no existing tables
 (nor their data) need be aware. However,
 since each type maps all of its supertype
 fields as well, introducing a new field on a
 base class, or a new base entity itself,
 requires modifying the tables for all affected  
 subtypes across the hierarchy to map any
 newly introduced fields.

Performance impact Querying across multiple types requires a
 UNION select statement, which is not very
 performant, but querying a single type is very
 efficient, since only one table is involved in
 the query. Relationships involving supertypes
 in this hierarchy should be avoided, since
 they will necessarily require this UNION
 operation to resolve to concrete subtype   
 instances.

Listing 1: Person.java, an Abstract Root Entity in a SINGLE_TABLE Inheritance Hierarchy       

/*

* Person: An abstract entity, and the root of a SINGLE_

TABLE hierarchy

*/

@Entity

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name = “TYPE”)

@NamedQuery(name = “Person.findAll”, query = “select o 

from Person o”)

@SequenceGenerator(name = “PersonIdGenerator”,

sequenceName = “CH04_ST_PERSON_SEQ”, initialValue = 100,

allocationSize = 20)

@Table(name = “CH04_ST_PERSON”)

public abstract class Person

implements Serializable

{

@Column(name = “FIRST_NAME”)

private String firstName;

@Id

@Column(nullable = false)

@GeneratedValue(generator=”PersonIdGenerator”)

private Long id;

@Column(name = “LAST_NAME”)

private String lastName;

@Version

private Long version;

@OneToOne(cascade = { CascadeType.ALL })

@JoinColumn(name = “HOME_ADDRESS”, referencedColumnName 

= “ID”)

private Address homeAddress;

public Person() {

}



43October 2006JDJ.SYS-CON.com

/* get/set methods... */

}

Listing 2:  Employee.java, an Abstract Intermediate Entity in a SINGLE_TABLE Inheritance

Hierarchy

/*

* Employee: An abstract entity

*/

@Entity

@NamedQuery(name = “Employee.findAll”, query = “select o from 

Employee o”)

public abstract class Employee

extends Person

implements Serializable

{

protected String email;

protected String dept;

@ManyToOne(cascade = { CascadeType.ALL })

@JoinColumn(name = “MANAGER”, referencedColumnName = “ID”)

protected FullTimeEmployee manager;

public Employee() {

}

/* get/set methods... */

}

Listing 3: FullTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE Inheritance

Hierarchy

/*

* FullTimeEmployee: A concrete leaf entity */

@Entity

@NamedQuery(name = “FullTimeEmployee.findAll”,

query = “select o from FullTimeEmployee o”)

@DiscriminatorValue(“FullTimeEmployee”) // Illustrating the default 

value

public class FullTimeEmployee

extends Employee

implements Serializable

{

@Column(name = “ANNUAL_SALARY”)

protected Double annualSalary;

@OneToMany(mappedBy = “manager”, cascade = { CascadeType.ALL })

public List<Employee> managedEmployees;

public FullTimeEmployee() {

}

/* get/set methods... */

}

Listing 4: PartTimeEmployee.java, a Concrete Leaf Entity in a SINGLE_TABLE Inheritance

Hierarchy

/*

* PartTimeEmployee: A concrete leaf entity

*/

@Entity

@NamedQuery(name = “PartTimeEmployee.findAll”,

query = “select o from PartTimeEmployee o”)

public class PartTimeEmployee

extends Employee

implements Serializable

{

@Column(name = “HOURLY_WAGE”)

protected Double hourlyWage;

public PartTimeEmployee() {

}

/* get/set methods... */

}

Listing 5:  Person.java, an Abstract Root Entity in a JOINED Inheritance Hierarchy

/*

* Person: An abstract entity, and the root of a JOINED hierarchy

*/

@Entity

@Inheritance(strategy = InheritanceType.JOINED)

@DiscriminatorColumn(name = “TYPE”)

@NamedQuery(name = “Person.findAll”, query = “select o from Person 

o”)

@SequenceGenerator(name = “PersonIdGenerator”,

sequenceName = “CH04_JOIN_PERSON_SEQ”, initialValue = 100,

allocationSize = 20)

@Table(name = “CH04_JOIN_PERSON”)

public abstract class Person

implements Serializable

{

/* The class body is identical across all inheritance strategies 

*/

}

Listing 6: Person.java, an Abstract Root Entity in a TABLE_PER_CLASS Inheritance

Hierarchy

/*

* Person: An abstract entity, and the root of a TABLE_PER_CLASS 

hierarchy

*/

@Entity

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

@DiscriminatorColumn(name = “TYPE”)

@NamedQuery(name = “Person.findAll”, query = “select o from Person 

o”)

@SequenceGenerator(name = “PersonIdGenerator”,

sequenceName = “CH04_TPC_PERSON_SEQ”, initialValue = 100,

allocationSize = 20)

@Table(name = “CH04_TPC_PERSON”)

public abstract class Person

implements Serializable

{

/* The class body is identical across all inheritance strategies 

*/

}

 Table 3 Pros and Cons of a TABLE_PER_CLASS Inheritance Strategy

Considerations Pros and Cons
Design-time considerations As new outermost concrete types are intro-
 duced into the hierarchy, new tables are   
 added. This is nice because no existing tables
 (nor their data) need be aware. However,
 since each type maps all of its supertype
 fields as well, introducing a new field on a
 base class, or a new base entity itself,
 requires modifying the tables for all affected  
 subtypes across the hierarchy to map any
 newly introduced fields.

Performance impact Querying across multiple types requires a
 UNION select statement, which is not very
 performant, but querying a single type is very
 efficient, since only one table is involved in
 the query. Relationships involving supertypes
 in this hierarchy should be avoided, since
 they will necessarily require this UNION
 operation to resolve to concrete subtype   
 instances.



JDJ.SYS-CON.com44 October 2006

any in the Open Source 
community (including the 
camps following Tomcat, 
Geronimo, Struts, Spring, 

and Hibernate) have chosen to focus 
on solving problems of developer 
efficiency and software elegance, 
and are sometimes forced to leave 
production operating characteristics 
such as HA (high availability)/fault 
tolerance and central management 
control for future releases. Or, in 
some cases, the elegance of the 
framework stems from its light-
weight nature and thus the user 
community as a whole can’t be made 
to suffer the complexities of cluster-
ing and HA for the needs of the few. 
 Combine this future feature roll-
out with the current exponentially 
increasing adoption of Open Source 
in enterprise applications – and the 
result is that enterprises are running 
some applications with little to no 
fault tolerance. This leaves the en-
terprise IT manager stuck between 
a rock and a hard place, because on 
the one hand enterprises demand 
HA at reasonable levels of efficiency, 
but on the other Open Source ap-
plications are cheap to acquire, 
easy to develop, (albeit sometimes 
hard to operate), and put out the 
fires immediately without having to 
mess with budget approvals. Hands 
downs, Open Source applications 

are deployed more frequently than 
any other software stack, and the IT 
manager can either ignore the lack 
of fault tolerance and plan to deal 
with issues if and when they arise 
or try to inject HA via additional 
customization. Solving HA is tricky 
business as IT managers tend to 
not want to edit their Open Source 
framework internals as a one-off.  
 Therefore, in response to this 
growing issue, more than five Open 
Source clustering projects have 
recently emerged, but the task of 
integrating them into development 
frameworks is pretty significant and 
will realistically take quite some 
time. Java serialization (some archi-
tects refer to this as the big “S”) can 
impose an insurmountable number 
of complexities on an application’s 
domain model, and simultaneously 
reduces performance to a significant 
degree. So what’s an IT manager to 
do, wait and hope for the best?

 Enter clustering at the JVM-level. 
Access to the network when reading 
and writing objects to heap can be 
transparent and efficient. Think 
“network attached memory” with 
performance optimizations that, 
at runtime, pushes only heap-level 
deltas and only to JVMs that are 
actively accessing particular parts of 
objects. With heap-level replication, 
the Open Source frameworks don’t 
have to change when an enterprise 
IT management team decides an 
application is too important to run 
without HA, for example.
 Let’s examine a use case. Spring 
Web Flow or Rife Continuations 
both aim to solve a similar problem 
for the developer of Web applica-
tions. This is a well-understood 
problem around making support for 
the “forward” and “back” buttons 
in Web browsers work in a consis-
tent and logical fashion across Web 
sites without custom coding by 
each application developer in each 
enterprise. For example, in visiting 
three Web sites a consumer adds an 
item to his shopping basket at each 
site. On one site, clicking the “back” 
button implicitly removes the item 
from the basket while on the other 
two it doesn’t. This is due to the 
fact that without container support 
for the “back” button, a Web app 
developer is left to his own devices 

Open Source

by Ari Zilka

Fault Tolerance with Open Source   
and JVM Clustering

M

Ari Zilka is the founder  

and CTO of Terracotta.

ari@terracottatech.com 

A marriage made in Java

Clustering at the JVM-level requires no code changes, so no code in 
frameworks like Spring, Rife, Tomcat, and Geronimo has to

change and HA can be injected at runtime after an application is 
designed, written, QA’d, debugged, and launched into production”

“



45October 2006JDJ.SYS-CON.com

when defining the “back” behavior for the site. Continu-
ations provide an easy way to restore an application’s 
state to the mode it was in when the Web page was first 
rendered. This lets the developer decide what changes to 
state should or shouldn’t be rolled back without lots of 
custom code.
 This is a very powerful development paradigm. But 
it trades off the value originally sought after with load 
balancers and session clustering. That value was one of 
total fault tolerance; with sessions clustered and a sticky 
load balancer, no one app server was critical to produc-
tion operation, and yet the applications didn’t bottleneck 
prematurely on network replication of the session state.
 The application server’s internal clustering can’t 
always guarantee that the information that the Spring 
or Rife framework needs to restore state is available 
on the server that the load balancer has sent the HTTP 
request to. If Serialization was used to copy the state of 
a Continuation around the application server cluster, 
all objects that can be accessed and edited during a re-
sponse to that request would have to be serializable, and 
the developer would have to resolve possible conflicts 
when objects start getting duplicated around the cluster. 
So Spring and Rife have chosen to leave this problem to 
a JVM-level clustering solution and have been cooperat-
ing with Terracotta. It’s a unique marriage, but it works.
 Terracotta provides a production-proven JVM cluster-
ing engine for Java applications in production. Since 
clustering at the JVM-level requires no code changes, 
the technology allows Spring, Rife, Tomcat, Geronimo, 
and other frameworks to be clustered with no changes 
either to the framework or the code that enterprises 
write when using those frameworks. Clustering and, 
thus, HA, can be injected at runtime after an applica-
tion is designed, written, QA’d, debugged, and launched 
into production, as long as no one tries to cluster that 
application by  hand.  
 Terracotta provides a (pure Java software-based) 
server that acts as a network attached memory hub 
and efficiently brokers all communication among the 
application JVMs. It can be downloaded and comes 
pre-configured for many current frameworks (with more 
to come on the horizon). When Terracotta servers are 
used underneath Open Source frameworks to inject HA 
at runtime, the Terracotta server’s production license is 
free. However, just to avoid any confusion, please note 
that Terracotta is a commercial company that offers sup-
port and services in conjunction with production use of 
its products. 
 The value is in delivering HA to any and all Open 
Source. And soon Terracotta will introduce a developer 

area on their web site, where Open Source framework 
integration will be fully supported via online tools con-
sistent with the community’s expectations: support fo-
rums, bug tracking systems, etc.  Furthermore, the site’s 
developer area will offer open sourced source code that 
implements key design patterns for working optimally 
with network attached memory constructs.
   The key benefits of combining Open Source and Ter-
racotta:
• Provides enterprise-level HA to Open Source
• No changes to frameworks or business logic in the 

presence of JVM-level clustering. 
• The implementation is cost-efficient with a support-

only cost model.  

 Enterprises can now have Open Source and fault tol-
erance too.   

Terracotta provides a (pure Java software-based) server that acts  
as a network attached memory hub and efficiently brokers all  

communication among the application JVMs”
“



JDJ.SYS-CON.com46 October 2006

n this article I’ll share my experi-
ence in using the new features in 
Java 5 for solving an old industry 
problem, the problem of collecting 

constantly published financial data in 
reliable way. The business case example 
I’m going to discuss relates to the 
acquisition of some sort of market data 
published by a financial data source 
system like Reuters.

Data Source Publishing Conditions
 Assume a Data Source allows for a 
consumer subscription that results in 
publishing market data messages via a 
DataFeed Channel. The consumer can 
listen to the messages, get them from 
the Event Queue, and process them one 
at a time. 
 The Data Source usually provides 
quite a high speed in message publish-
ing. If a consumer processes messages 
slower than they arrive in the Event 
Queue, the Data Source can temporary 
store not-yet- consumed messages in its 
buffer – Temporary Event Storage. How-
ever, if the buffer overflows, the Data 
Source cancels the subscription and 
loses all sent but not consumed data 
messages. In such a case, the consumer 
has to resubscribe to get new data. The 
basic data flow is shown in the diagram 
in Figure 1.

Typical Consumer Conditions
 In the diagram, the consumer’s Mes-
sage Receiver operates as a listener to the 
data messages. To process the message, 
the Message Receiver creates a Data Pro-
cessor object that extracts data from the 
message. Gathering financial informa-
tion, we’re dealing with highly valuable 
and important data, i.e., our primarily 
goal is to save received data as soon as 
possible. This is why the diagram shows 
only the data store – the Database – and 

an optional Messaging System that might 
be used for publishing notifications 
about any new data received. Obviously, 
the format of the data sent out by the 
Data Source differs in the most of cases 
from the receiver’s internal format.So, 
minimal initial data processing in the 
Data Processor might involve a data 
format transformation,  data persisting 
and optional notification.
 As you’ve probably noticed, the Mes-
sage Receiver works in a single thread 
mode. Since data processing includes 
operations in the database and mes-
saging system, a single threaded mode 
constitutes high processing risks for the 
consumer. Those risks include:
• An inability to keep up with the 

speed of the arriving data, which 
leads to
–  Temporary Event Storage overflow 

and 
– losing data and the subscription 

• Any unpredicted hanging problems in 
the network and the used resources

• Temporary resource unavailability.

 The solution is supposed to minimize 
these risks.

Designing the Solution
 We can minimize the risks if we 
decouple the data acquisition procedure 

from the data processing procedure. 
Moreover, since data processing is a 
repeatable procedure, we might want 
to process several messages in paral-
lel. Java 5 offers a great new tool for this 
task – a ThreadPoolExecutor API and its 
companions are available in the java.
util.concurrent package. 
 While this article is not a presenta-
tion of the ThreadPoolExecutor, we need 
to mention a few features used in the 
solution. The ThreadPoolExecutor is 
not really a pool of objects as a Object 
Pool pattern is usually understood. 
In particular, it consists of two major 
functional parts – a queue of Runnable 
objects and an execution engine. The lat-
ter starts a number of Runnable objects 
– threads – and keeps this number ac-
tual. All threads created are non-daemon 
threads; they belong to the same thread 
group and have the same NORM_PRI-
ORITY priority.
 The ThreadPoolExecutor maintains 
the corePoolSize and maximumPoolSize 
characteristics of the pool. When a new 
task is submitted and the number of run-
ning threads is less than corePoolSize, a 
new thread is created. As the specifica-
tion states, “If there are more than core-
PoolSize but less than maximumPoolSize 
threads running, a new thread will be 
created only if the queue is full.”

Java 5

by Michael Poulin

Collecting Financial Market Data 
with Java 5

I

Michael Poulin works as a 

consulting technical architect 

for leading financial firms. He is 

a Sun Certified Architect for Java 

Technology. For the past several 

years, Michael has specialized in 

distributed computing, SOA, and 

application security. 

m3poulin@yahoo.com

Decouple data acquisition from data processing

 Figure 1 Basic data flow in a financial data collection

Data Source
(e.g. Reuters)

DataFeed Channel
Event
Queue

Temporary
Event Storage

Message
Receiver

Data
Processor

Notification Message Messaging
System Database



���������������������������������������������������������������������

���������������������������������������������������������������������������

�����������������������������������������������������������������������

���������������������������������������������������������������������

������������������������������������������������������������������

�����������������������������������������������������������������

��������������������������
��������������������������������������������������������������������

���������������������������������������������������������������

�����������������������������������������������������������������

��������������������������������������������������������������������

��������������������������������������������������������

��������������������������

������������� ����������� ���� ���� ������������� ����������� ���� ���� �������������
����������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ����
���� ������������� ����������� ���� ���� ������������� ����������� ���� ���� ���������
����� ����������� ���� ���� ������������� ����������� ���� ���� ������������� �����������
���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ���� �����
��������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������

������������������������

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED

�����������������������������������������
��������������������������������

�����������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

���������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������������� ����������� ���� ���� ������������� ����������� ���� ���� �������������
����������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ����
���� ������������� ����������� ���� ���� ������������� ����������� ���� ���� ���������
����� ����������� ���� ���� ������������� ����������� ���� ���� ������������� �����������
���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ���� �����
�������������������������������������������������������������������������������

��������������������������������������������������������������

������������������������

��������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������



JDJ.SYS-CON.com48 October 2006

Java 5

 In our solution, we are interested in as 
much decoupling between two processes 
as possible. So we have to let the queue 
grow to avoid denying the new Runnable 
object submitted by the Message Receiver 
but we have finite memory resource; we 
have to process as many tasks (threads) in 
parallel as possible but we have to manage 
a number of concurrent threads in the sys-
tem since they’re quite delicate resources. 
Such conflicting requirements may be 
mostly satisfied if we use a queue of fixed 
size but big enough to have time to catch 
consistent queue growth and compensate 
it. At the same time, the maximumPoolSize 
has to be set to the value, which still allows 
its increase in reasonable boundaries (via 
explicit management actions at runtime). 
The latter may help slow down the queue 
growing or even stabilize it.
 Plus we can engage multiple subscribers 
(Message Receivers) and split the incom-
ing messages into a number of sub-flows. 
Each sub-flow of data acquisition might 
be organized as described above. One 
possible alternative solution is to use the 
so-called Reliable Messaging technique 
and temporary store received data in the 
messaging infrastructure until it can be 
permanently persisted.
 Finally, the ThreadPoolExecutor pro-
vides an API for getting some basic pool 
state statistics, such as:
• current pool size
• number of completed tasks

• number of active tasks
• total amount of tasks for its lifecycle
• largest size of the pool (queue) for its 

lifecycle

 If your application uses another Java 5 
feature – JMX technology – you can easily 
monitor the state of the pool, i.e., the 
dynamics of your task processing and, in 
some cases, manage the pool configura-
tion “on the fly.”
 The diagram in Figure 2 refines the 
design represented in Figure 1 by using the 
ThreadPoolExecutor. In particular, while 
the Message Receiver retrieves messages 
from the EventQueue sequentially it wraps 
them by Runnable objects – the Data 
Transformers – and passes them to the 
ThreadPoolExecutor instead of processing 
them immediately.
 The ThreadPoolExecutor operates on 
the Runnable Data Transformers, i.e., 
it executes a corePoolSize number of 
threads and queues all extras. Each Data 
Transformer invokes a Data Processor to 
massage data messages as mentioned in 
the Typical Consumer Conditions section. 
Thus, the Message Receiver and Data Pro-
cessor are totally decoupled and can work 
at their own pace.
 An additional question concerns the 
Data Processor: is it shared between con-
current threads or does it run in multiple 
instances, one per thread. If Data Processor 
were just massaged data, I would design 

it in a thread-saved manner and share it 
between the threads. However, in our case, 
the Data Processor invokes two external 
resources and we have to consider a 
certain policy for resource connections. If a 
connection is shared, we develop an extra 
risk of serializing Data Processor requests 
for the connection, a risk of performance 
degradation as well as a risk of connection 
failure that affects all waiting Data Proces-
sor threads. A better, less risky design would 
be if we decoupled the Data Processor 
from actual connections via a Connection 
Pool(s). In this case, the connections can 
be reused but not shared and, once again, 
resource access becomes more transparent 
and suitable for our management.
 The extra features shown in Figure 2 
are a Management Component and a Task 
Execution Monitor. The Management 
Component is a standard JMX MBean that 
registers with a JMX server and can accept 
its commands to change the ThreadPoo-
lExecutor configuration at runtime. The 
Task Execution Monitor thread periodically 
reads the pool’s state (statistics) and uses 
the Management Component to broadcast 
them to all who might be interested, in 
particular, to the same JMX server. If the 
JMX server is equipped with an adminis-
tration console and/or mechanisms that 
can send out different types of notification 
messages, your Operation Tem may be 
able to monitor the data collection process 
constantly. 

Conclusion
 We’ve demonstrated how Java 5’s 
ThreadPoolExecutor can be used to 
decouple data acquisition from the data 
manipulation processes. Features in  
the ThreadPoolExecutor can mitigate the 
data processing risks, improve perfor-
mance, and increase scalability in data 
processing. Another Java 5 feature – JMX 
technology – helps in monitoring and 
managing the ThreadPoolExecutor com-
ponent in real-time.   

References
• Class ThreadPoolExecutor, http://java.

sun.com/j2se/1.5.0/docs/api/java/util/
concurrent/ThreadPoolExecutor.html.

• Java Management Extensions (JMX), 
http://java.sun.com/products/
JavaManagement/index.jsp. 

• Michael Poulin. “Assured Delivery of 
Audit Data with SOA and Web Services.” 
WLDJ, Volume 4 Issue 6. http://jdj.sys-
con.com/read/169336.htm.  Figure 2 Decoupling data acquisition from data processing using ThreadPoolExecutor

Data Source
(e.g. Reuters)

DataFeed Channel
Event
Queue

Temporary
Event Storage

Message
Receiver

Notification Message

Messaging
System

Database

ThreadPoolExecutor

Task Queue

Task Executor

<Runnable>
Data 

Transformer
Data Processor

Data Processor

Data Processor<Thread>
Data Transformer

<Thread>
Task Execution

Monitor

<MBean>
Management
Component



���������������������������������
���������������������������

24/7

Visit the ��� 
��������������� 

Website Today!

������������������������������������������

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
������������������������������������������
���������������������������������������������������

����������
�������������������������������������������������������������������������������������

�������������
����������������������������������������������������������������������������������������

��������
������������������������������������������������������������������

����������
��������������������������������������������������

��������
�������������������������������������������������������������
�
����������
������������������������������������������������������������������������������

��������������������
�����������������������������������������������������������������������

���������������������������������
���������������������������

24/7



JDJ.SYS-CON.com50 October 2006

bstraction, as defined on 
dictionary.com, is “considering 
something as a general quality or 
characteristic, apart from con-

crete realities, specific objects, or actual 
instances.” It’s a powerful concept that 
underpins software reuse. When you im-
plement a problem, if, instead of starting 
from scratch, the scenario can be thought 
of as being an example of an already-un-
derstood question, its solution can benefit 
from existing implementations.  
 Abstraction is a powerful concept, but 
it carries dangers as well. The first is those 
who become so enamoured with the idea 
of generality that they design with the goal 
of re-use and framework construction 
alone, rather than remaining focused on 
the concrete problem at hand. The second 
problem occurs when said folk have their 
abstract solution complete, they feel com-
pelled to force it on every implementation 
that comes within range.
 In a project I once worked on, a group 
of eager young business analysts were 
given the task of designing a new insur-
ance system. The business model behind 
insurance is pretty simple: the insured 
party is quoted a policy that involves them 
paying you a premium in exchange for 
which you, the insurer, underwrite various 
circumstances that, should they occur, 
cause some kind of loss to the insured. 
The insurer’s role is to recompense the 
insured for their misfortune.
 The boffins designing our system 
decided that this was merely an instance 
of the more general process of “money 
exchanging hands for goods and services.” 
After they parked themselves in confer-
ence rooms with walls plastered with 
meaningless diagrams and charts, they 
emerged having decided that they would 
design a grand and general-purpose 
solution for all financial transactions. 
This “panacea” of theirs would not only 
handle every possible type of insurance 
policy known to mankind, but it would be 
customizable to all other scenarios that 
involved money changing hands, such as 
banking, accounting, and electronic point 
of sale. The end result was a system that, 

while an award-winning work of art for 
abstraction and vagueness, failed to do 
the basics of insurance without having to 
bump and fight its way through the lower 
layers, delivering poor performance and a 
badly fitting user experience.
 As the cause of such overzealous design 
I wonder whether programmers have 
an atavistic desire to find some kind of 
ultimate software truth. Much of twenti-
eth-century physics was dedicated to such 
theorem, consolidating first magnetism 
and electricity before moving onto gravity. 
Grand unification attempts occur in other 
disciplines – mathematicians attempting 
to reduce all number theory to fundamen-
tal and irreducible truths or the biolo-
gists’ desire to classify living things into 
taxonomical trees and genus. Do software 
architects feel compelled to follow this 
scientific path, looking for shapes in the 
dark or patterns in the clouds where none 
exist?
 The second danger posed by the uber 
abstraction crowd is that having designed 
their perfect solution, they now need to 
nurture and promote their baby, wielding 
their shiny hammer at every screw, bolt, or 
rivet that comes within range.
 “Aha, you’re building a JMS server. 
That’s just a message protocol; I already 
have one of those that can handle every-
thing, so all you have to do is adapt to me 
and write a wrapper to my API.”
 The problem with this solution is that, 
as an implementer of the abstract frame-
work, you have to wrestle and bridge the 
impedance mismatch. Your code is now 
concerned with how to provide a JMS 
interface on something that was built and 
optimized for another kind of message 
protocol. Through loss of fidelity, the 
end result looks and behaves like a race 
horse wearing rollerblades and fed with 
gasoline. It does the job of moving on 
four wheels, but clumsily and without 
the reliability and grace of an internal 
combustion engine–powered car that 
the original spec called for. Examples of 
such applications occur all the time, from 
those who believe that e-mail is merely 
a type of document for which all their 

singing, dancing, jumbo jet document 
management software can be tweaked to 
have an inbox and outbox, through the “I 
love XML” bumper sticker brigade who 
believe that any kind of data sent over a 
wire should be a W3C-compliant XML 
document object model when simple 
serialization or a basic text message would 
have sufficed.  
 For the user of the application, just as 
the rollerblading horse is likely to neigh 
from time to time, behavior and function-
ality from the underlying abstract layers 
bubble to the surface. Your messaging 
application throws SAX parser errors at 
you when things go wrong, or your e-mail 
product tells you that document variables 
aren’t set correctly. The terminology of 
the thing the user is concerned about, 
the message or the e-mail, is lost as one 
of the layers of abstract framework code 
that underpins their application rears its 
ugly head. Joel Spolsky coins this kind of 
behavior Leaky Abstraction (http://www.
joelonsoftware.com/articles/LeakyAb-
stractions.html). No matter how much 
wallpaper or perfume the developer 
used to massage and beat the abstract 
framework into shape for your applica-
tion’s implementation, at some point the 
abstract layers are going to rear their head 
as the horse needs to poop.
 Alongside the opening dictionary.com 
definition of abstraction, which proclaims 
the benefits of generality, is an ironi-
cally appropriate alternative usage: “an 
impractical idea; something visionary and 
unrealistic.”
 Software should be built with the goal 
of solving a specific user scenario. In 
building the solution, you should make 
the overriding goal high-performance 
combined with fitness for purpose. By 
using as few underlying layers as possible, 
the number of project and physical de-
pendencies should be kept to a minimum. 
When you’re a hammer everything looks 
like a nail, yet when you’re a software 
developer everything should look like a 
fresh challenge, not a problem to be short-
changed by hacking some other problem’s 
solution to fit.   

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

The Perils of Abstraction

A

Joe Winchester is  

a software developer

working on WebSphere

development tools  

for IBM in Hursley, UK.

joewinchester@sys-con.com



OFFER SUBJECT TO CHANGE WITHOUT NOTICE 

JDJ is the world’s premier independent, vendor-neutral print resource 
for the ever-expanding international community of Internet 

technology professionals who use Java.

The World’s Leading Java Resource
Is Just a >Click< Away!

www.JDJ.SYS-CON.com 
or  1-888-303-5282

6999$ 

Subscription Price Includes 
FREE JDJ Digital Edition!

ONE YEAR
12 ISSUES

ONLY



JDJ.SYS-CON.com52 October 2006

he Eclipse platform is an Open Source, integrated 
system of application development tools that you 
implement and extend using a plug-in interface. 
Eclipse provides a set of core plug-ins that config-
ures the basic services for the platform’s frame-

work. A platform developer can build and integrate new 
tools in this application development system.
 Business Intelligence Reporting Tool (BIRT) is a set of 
plug-in extensions that lets a developer add reporting 
functionality to an application. The APIs in BIRT define 
extension points that let the developer add custom func-
tionality to the BIRT framework.
 This article describes how to create a BIRT extension 
using the Eclipse Plug-in Development Environment 
(PDE). The example adds a custom report item, Rotated-
Label, to the BIRT Report Designer Palette that a report 
developer can drag-and-drop into a report design, as 
shown in Figure 1.
 The sample code for the plug-in creates a label in the 
runtime report that renders text at a specified angle. Figure 
2 shows the display text rotated at an angle of 45 degrees.
 A developer uses the Eclipse PDE to create, develop, 
test, debug, and deploy a plug-in. The Eclipse PDE 
supports host and runtime instances of the workbench 
project. The host instance provides the development 
environment. The runtime instance lets you launch a 
plug-in to test it. 
 To implement the report item extension, the plug-in 
developer does the following tasks:
• Configures the plug-in project in the Eclipse PDE
• Adds the report item to the Report Designer Palette 

using the report item UI extension point.
• Adds the report item definition to the Report Object 

Model (ROM) using the report item model extension 
point.

• Adds rendering behavior to the report item using the 
report item presentation extension point.

• Deploys the report item extension to the Eclipse plug-
in environment

 An Eclipse plug-in implements the following components:
• Plug-in manifest – An XML document that describes 

the plug-in’s activation framework to the Eclipse run-
time environment

• Plug-in runtime class – A Java class that defines the 
methods for starting, managing, and stopping a plug-
in instance

• Extension-point schema definition – An XML docu-
ment that specifies a grammar that you must follow 
when defining the elements of a plug-in extension in 
the Eclipse PDE 

 In the Eclipse PDE Workbench, the developer can 
create the framework for a plug-in extension by using 
the Manifest Editor to generate the plug-in manifest and 
class templates based on the definitions in the extension-
point schemas.
 In the Eclipse PDE, create a new project for the rotated 
label report item extension by choosing File->New->Proj-
ect and selecting the Plug-in Project wizard. In Plug-in 
Project, modify the settings, as shown in Table 1.
 In Plug-in Content, modify the settings, as shown in 
Table 2.
 Figure 3 shows the host instance of the Eclipse PDE 
with the rotated label report item extension project open 
in the Manifest Editor.
 After defining the plug-in project, specify the list of 
plug-ins that must be available on the classpath of the 
rotated label report item extension to compile and run. 
On PDE Manifest Editor, choose Dependencies. In Re-
quired Plug-ins, remove the following plug-ins:
• org.eclipse.ui
• org.eclipse.core.runtimeThe authors are members of 

the extended BIRT development 

team at Actuate Corporation and 

all have backgrounds in both 

computer science and technical 

writing. Collectively, they have 

many years experience in  

technical consulting, training, 

writing, and publishing about 

reporting, business intelligence 

tools, and database  

technologies.

jweathersby@actuate.com
iana@actuate.com

tbondur@actuate.com

by Jason Weathersby, Iana Chatalbasheva, 
and Tom Bondur

T

Developing an  

Eclipse BIRT Report  
Item Extension

Architecture and framework

Feature

 Table 1 Settings for Plug-in Project fields

Section Option Value
Plug-in Project Project name org.eclipse.birt.sample.reportitem. 
  rotatedlabel
 Use default Selected 
 location

 Location Not available when you select use  
  default location.

Project Settings Create a Java Selected  
 project

 Source folder src 

 Output folder bin

Target Platform Eclipse version 3.2

 OSGi framework Selected



53October 2006JDJ.SYS-CON.com

 Choose Add. Plug-in Selection appears. In Plug-in Selec-
tion, select the following plug-ins:
• org.eclipse.emf.ecore
• org.eclipse.birt.report.designer.ui
• org.eclipse.birt.report.model
• org.eclipse.draw2d
• org.eclipse.birt.report.engine
• org.eclipse.jface.text
• org.eclipse.core.runtime
• org.eclipse.birt.core
• org.eclipse.ui
• org.eclipse.birt.core.ui

 The order of the list determines the sequence in which a 
plug-in loads at runtime. Use Up and Down to change the load-
ing order as necessary. The rotated label report item extension 
doesn’t need any changes to the loading order if you select the 
required plug-ins in the order listed in the previous step.
 On PDE Manifest Editor, choose Extensions. On Exten-
sions, declare the extension points required to implement 
the rotated label report item plug-in and add the extension 
element details. The Eclipse PDE uses the XML schema 
defined for each extension point to provide the list of valid 
attributes and values specified for the extension elements.
 To add an extension point, choose Add. New Extension 
appears. In Available extension points, select the plug-in 
that contains the extension point. 
 The rotated label report item extension implements the 
following extension points:
• org.eclipse.birt.report.designer.ui.reportitemUI registers 

the graphical user interface (GUI) to use for the report 
item extension

• org.eclipse.birt.report.model.reportItemModel specifies 
how to represent and persist the report item extension 
in the Report Object Model (ROM)

• org.eclipse.birt.report.engine.reportitemPresentation 
specifies how to instantiate, process, and render the 
report item extension

 To add an extension point element right-click on an 
extension point such as org.eclipse.birt.report.designer.
ui.reportItemLabelUI. Choose New <extension point ele-
ment> to add the extension element to the project. Figure 
4 shows how to select the extension point element, report-
ItemLabelUI, specified by the extension point, org.eclipse.
birt.report.designer.ui.reportitemUI.
 An XML schema specifies the following properties that 
identify each extension point in the runtime environment:
• ID – Optional identifier of the extension instance
• Name – Optional name of the extension instance
• Point – Fully qualified identifier of the extension point

 On Extensions, these settings appear in Extension Details 
when an extension point is selected as shown in Figure 4. 
 The extension point, org.eclipse.birt.report.designer.
ui.reportitemUI, specifies the following extension  
elements:
• reportItemLabelUI – The fully qualified name of the 

Java class that gets the display text for the report item 
component in the BIRT Report Designer

• model – ROM report item extension name that maps to 
this UI component

• palette – Icon to show and the category in which the 
icon appears in the Palette

• editor – Flags indicating whether the editor shows in the 
MasterPage and Designer UI and is resizable in the Editor

• outline – Icon to show in the Outline View
• propertyPage – Optional Property Edit Page to use for 

the report item extension in the Property Edit View
        
 The extension point org.eclipse.birt.report.model.
reportItemModel specifies reportItem and the following 
extension element properties:
• extensionName – Internal unique name of the report 

item extension
• class – Fully qualified name of the Java class that imple-

ments the org.eclipse.birt.report.model.api.extension.
IReportItemFactory interface

• defaultStyle – Predefined style to use for the report item 
extension

• isNameRequired – Field indicating whether the report 
item instance name is required

• displayNameID – Resource key for the display name

 reportItem also specifies the following property exten-
sion elements:
• rotationAngle
• displayText

 rotationAngle and displayText each specify the following 
properties:
• name – Internal unique name of the property extension 

element
• type – Data type, such as integer or string
• displayNameID – Resource key for the display name
• canInherit – Flag indicating whether the property 

extension element can inherit properties
• detailType – Detail data type such as Boolean or string
• defaultValue – Default value of the property extension 

element

 Figure 1  Rotated label report item in a report design



JDJ.SYS-CON.com54 October 2006

• isEncryptable – Flag indicating whether the property is 
encrypted

• defaultDisplayName – Display name to use if no localized 
I18N display name exists

 The extension point org.eclipse.birt.report.engine.reporti-
temPresentation specifies the following report Item extension 
elements:
• name – Unique name of the report item extension.
• class – Fully qualified name of the Java class that imple-

ments the org.eclipse.birt.report.engine.extension.
IReportItemPresentation interface.

• supportedFormats – Supported rendering formats for this 
extended item. The value for this attribute is a comma- 
separated string, such as "HTML, PDF." The string is case-
insensitive.

 Listing 1 shows the automatically generated manifest file 
plugin.xml for the rotated label report item extension that 
describes the plug-in’s activation framework to the run-time 
environment.
 After defining the plug-in framework in the Eclipse PDE, 
the developer makes the code-based extensions required to 
complete the plug-in development process. 
 The rotated label report item extension implements the fol-
lowing interfaces and classes:
• org.eclipse.birt.report.designer.ui.extensions specifies the 

following interfaces:
– IPropertyTabUI – Represents a new tab in the Property 

Editor view, creating the UI, updating property values 
on request, and notifying the BIRT framework of any 

UI-based property change. PropertyTabUIAdapter is the 
adapter class that implements this interface.

–  IReportItemLabelProvider – Defines the interface 
for the accessor method that provides the label text. 
ReportItemLabelProvider is the adapter class that imple-
ments this interface.

–  IReportItemPropertyEditUI – Provides the interface for 
defining tabs in the Property Editor. 

• org.eclipse.birt.report.designer.ui.views.attributes.provid-
ers.PropertyProcessor provides accessor methods for pro-
cessing general property information.

• org.eclipse.birt.report.engine.extension
– IRowSet – Defines the interface to a row set. Provides 

metadata, grouping level, and row navigation methods.
– IReportItemPresentation – Defines the interface for 

presentation of a report item extension. IReportItem-
Presentation sets the locale, resolution, output, and 
image formats and processes the extended item in the 
report presentation environment. ReportItemPresentatio
nBase is the adapter class that implements this interface.

• org.eclipse.birt.report.model.api
– DesignElementHandle – Functions as the base class for 

all report elements. DesignElementHandle provides a 
high-level interface to the BIRT report model. The class 
provides the generic services for all elements. Derived 
classes provide specialized methods for each element 
type. DesignElementHandle implements the inter-
face, org.eclipse.birt.report.model.elements.interfaces.
IDesignElementModel.

– DesignEngine – Provides an interface to the BIRT design 
engine. DesignEngine instantiates a session handle to 
use when creating a new design, opening an existing 
design, and managing design processing. The session 
handle contains the report design’s state. DesignEngine 
implements the interface, IDesignEngine interface.

– ExtendedItemHandle – Provides a handle to an exten- 
ded item that appears in a section of a report. The 
extended report item can have properties such as size, 
position, style, visibility rules, or a binding to a data 
source. ExtendedItemHandle extends ReportItemHan- 
dle, an abstract base class that extends DesignElement-
Handle.

• org.eclipse.birt.report.model.elements.Style extends org.
eclipse.birt.report.model.core.StyleElement, the base class 
for report elements with a style, and implements org.
eclipse.birt.report.model.elements.interfaces.IStyleModel, 
the interface for storing style element constants.

• org.eclipse.birt.report.model.api.extension specifies the 
following interfaces:
– IMessages – Defines the interface for getting a localized 

message from a message file using a resource key.
– IPropertyDefinition – Defines the interface for 

the accessor methods that describe a property. 
PropertyDefinition is the adapter class that implements 
this interface.

– IReportItem – Defines the interface for an instance of 
an extended report element. There is a one-to-one cor-
respondence between the BIRT report item and this 
implementation. ReportItem is the adapter class that 
implements this interface.

Feature

 Figure 2 Rotated label in the report preview

 Table 2 Plug-in content settings

Section Option Value
Plug-in Properties Plug-in ID org.eclipse.birt.sample.reportitem.  
  rotatedlabel
 Plug-in Version 1.0.0 

 Plug-in Name RotatedLabel Plug-in

 Plug-in Provider yourCompany.com or leave blank  

 Classpath rotatedLabel.jar

Plug-in Options Generate an  Selected
 activator, a Java 
 class that controls 
 the plug-in’s
 lifecycle 

 Activator org.eclipse.birt.sample.reportitem.rotated 
  label.RotatedLabelPlugin

 This plug-in Deselected



.NET Developer’s Journal is for .NET 
developers of all levels, especially those “in
the trenches” creating .NET code on a daily
basis:
• For beginners: 

Each issue contains step-by-step tutorials. 
• For intermediate developers: 

There are more advanced articles. 
• For advanced .NET developers: 

In-depth technical articles and columns 
written by acknowledged .NET experts.

Regardless of their experience level, .NET
Developer’s Journal assumes that everyone
reading it shares a common desire to under-
stand as much about .NET – and the busi-
ness forces shaping it – as possible. Our aim
is to help bring our reader-developers closer
and closer to that goal with each and every
new issue!

SAVE16%
OFF

THE ANNUAL COVER PRICE

Get 12 issues of .NETDJ  
for only $6999!

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

ANNUAL 
COVER PRICE:

$83.88
YOU PAY

$6999
YOU SAVE

$13.89
OFF THE ANNUAL

COVER PRICE

.NET Developer’s Journal is the leading 

independent monthly publication targeted at .NET

developers, particularly advanced developers. It brings

.NET developers everything they need to know in order

to create great software.

Published

monthly, .NET

Developer’s

Journal covers

everything of interest to

developers working with

Microsoft .NET technolo-

gies – all from a 

completely independ-

ent and nonbiased per-

spective. Articles are care-

fully selected for their prime 

technical content – technical

details aren’t watered down with

lots of needless opinion and com-

mentary. Apart from the technical content, expert ana-

lysts and software industry commentators keep devel-

opers and their managers abreast of the business

forces influencing .NET’s rapid development.

Wholly independent of both Microsoft Corporation

and the other main players now shaping the course of

.NET and Web services, .NET Developer’s Journal

represents a constant, neutral, expert voice on the

state of .NET today – the good, the bad, and the

ugly…no exceptions. 

Security Watch

Mobile .NET

.NET Trends

Tech Tips

Standards Watch

Business Alerts

.NET News

Book and Software
Announcements

SUBSCRIBE ONLINE!
www.sys-con.com/dotnet/ 

or Call 

1 888 303-5282

introductory

subscription offer!

A TRULY INDEPENDENT

VOICE IN THE WORLD OF .NET

Here’s what you’ll find in

every issue of .netdj:



JDJ.SYS-CON.com56 October 2006

– IReportItemFactory – Defines the interface for the fac-
tory that creates an instance of the extended element, 
IReportItem. IReportItem stores the model data and seri-
alizes the model state. ReportItemFactory is the adapter 
class that implements this interface.

• org.eclipse.birt.report.model.metadata.PropertyType func-
tions as the base class for the metadata of a property type. 
A property type provides the display name, data validation 
and conversion methods, XML name, and other processing. 
PropertyType implements the interface, org.eclipse.birt.re-
port.model.api.metadata.IPropertyType.

• org.eclipse.core.runtime.Plugin defines the basic methods 
for starting, managing, and stopping the plug-in instance.

 This article provides the implementation details for the 
most important classes in the rotated label report item  
extension.  
 For example, the RotatedLabelItemFactoryImpl class instan-
tiates a new report item when the user drags a rotated label 

report item from the Palette and drops the report item in the 
BIRT Report Designer Editor. This class extends the adapter 
class, org.eclipse.birt.report.model.api.extension.ReportItem-
Factory.
 In the implementation class, the newReportItem( ) method 
receives a reference to DesignElementHandle, which provides 
the interface to the BIRT report model. The newReportItem( ) 
method instantiates the report item, as shown in Listing 2. 
 In the RotatedLabelUI class, the getLabel( ) method provides 
the text representation for the label to BIRT Report Designer. 
RotatedLabelUI extends the adapter class, org.eclipse.birt.
report.designer.ui.extensions.ReportItemLabelProvider. Listing 
3 shows the code for the getLabel( ) method.
 The RotatedLabelPresentationImpl class specifies how to 
process and render the report item at presentation time. This 
class extends the org.eclipse.birt.report.engine.extension.
ReportItemPresentationBase class.
 The method, onRowSets( ), renders the rotated label report 
item as an image, rotated by the angle specified in the report 
design, as shown in Listing 4.
 In the RotatedLabelReportItemImpl class, the method, 
getPropertyDefinitions( ), instantiates RotatedLabelProper-
tyDefinitionImpl objects for the displayText and rotationAngle 
properties. RotatedLabelReportItemImpl extends the adapter 
class, org.eclipse.birt.report.model.api.extension.ReportItem. 
Listing 5 shows the code for the getPropertyDefinitions( ) 
method.
 The RotatedLabelPropertyEditUIImpl class builds the UI us-
ing the RotatedLabelGeneralTabUIImpl class to set up the con-
trols for the UI. RotatedLabelPropertyEditUIImpl implements 
the org.eclipse.birt.report.designer.ui.extensions.IReportItem-
PropertyEditUI interface. 
 In the RotatedLabelPropertyEditUIImpl class, the get-
CategoryTabs ( ) method instantiates the RotatedLabelGeneral-
TabUIImpl class, as shown in Listing 6.
 The RotatedLabelGeneralTabUIImpl class contains an 
internal class GeneralCategoryWrapper that creates the UI 
contents, as shown in Listing 7.
 The GraphicsUtil class creates the image containing the 
specified text and rotates the text image to the specified angle, 
using the following methods:
• createRotatedText( ) performs the following operations:

– Gets the display text and rotation angle properties
– Sets the display text font and determines the font metrics
– Creates an image the same size as the display text String
– Draws the display text as an image
– Calls the rotateImage( ) method to rotate the image at the 

specified angle
– Disposes of the operating system resources used to ren-

der the image
– Returns the image object

• rotateImage( ) rotates the image and determines the width, 
height, and point of origin for the image

 Listing 8 shows the code for createRotatedText( ) method.
 On the PDE Manifest Editor, in Overview, the Testing sec-
tion contains links to launch a plug-in as a separate Eclipse 
application in either Run or Debug mode. In Testing, choose 
Launch an Eclipse application. Eclipse launches the runtime 
workbench.

Feature

 Figure 3  The host instance of the PDE Workbench

 Figure 4  Adding an extension point element



�����������������������
���������������������������
�����������������

����������������������������������������������������������������������
����������������������������������������������������������������������
��������������������������������������������������������������������������
���������������������������������������������������������������������
�������������������������������������������������������������������������
�����������������������������������������������������������������������
���������������������������������������������������������������������������
����������������������

�����������������������������������������������������������������������
�������������������������������������������������������������������������
����������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
����������������������������������������

���������������
�������������������

�������������

�������������������

����������������������������������������������������������������������

�������������������� �����������������������������������
�����������������������

������������

The Flex® Logo is a Trademark of Adobe Systems Inc. ©Copyright 2006. All Right Reserved 

�����������

�������������������������������������
�����������������������
✓ ������������������������������������

✓ ����������������������

✓ ������������������������������

✓ ��������������������

✓ ������������������������

✓ ��������������������������������

✓ �������������������������������

✓ ����������������

✓ ��������������������������

✓ ������������������

�������������������
✓ �������������

✓ ������������������

✓ �����������������

✓ ����������������

✓ ��������������

✓ �����������������������

✓ ��������������������������

✓ ������������

✓ ��������������������������������

   �����������������������������

������������
��������������������������������������������������������������������� �����

���������������������������������������������������������������������������������

�����������������������������������������
�������������������������������������
�������������������������������������
�������������������������������
�������������������

������������������
�������������������������������������������������������� �����

����������������
� �����������



JDJ.SYS-CON.com58 October 2006

 In Report Design, choose File->New->Project, and 
choose Report Project. Create a new report in the project 
by choosing File->New->Report. 
 In File name, type a file name if you want to change 
the default file name. Choose Next. New Report displays 
the report templates. In Report templates, choose Blank 
Report, and choose Finish. 
 The layout editor displays the report design, new_re-
port.rptdesign. The Palette contains the RotatedText 
report item. 
 From the Palette, drag RotatedLabel to Layout, as 
shown in Figure 1. In new_report.rptdesign, choose 
Preview. The preview appears, displaying the rotated label 
report item, as shown in Figure 2. 
 This article is an excerpt from the book, Integrating 

and Extending BIRT by Jason Weathersby, Don French, 
Tom Bondur, Jane Tatchell, and Iana Chatalbasheva, 
soon to be published by Addison-Wesley. The book is the 
second volume in a two-book series about business intel-
ligence and reporting technology. The book introduces 
programmers to BIRT architecture and the reporting 
framework. It shows programmers how to build and 
deploy customized reports using scripting and BIRT APIs. 
It also describes how to use key extension points to cre-
ate a customized report item, a rendering extension for 
generating output other than HTML or PDF, and an Open 
Data Access (ODA) driver for a new data source. Integrat-
ing and Extending BIRT. Copyright 2007 Actuate. ISBN 
0321443853. For more information, please visit www.
awprofessional.com.   

Feature

Listing 1: Plug-in manifest file

<?xml version=”1.0” encoding=”UTF-8”?>

<?eclipse version=”3.2”?>

<plugin>

   <extension

         id=”rotatedLabel”

         name=”Rotated Label Extension”

         point=”org.eclipse.birt.report.designer.ui.reportitemUI”>

      <reportItemLabelUI class=”org.eclipse.birt.sample.

reportitem.rotatedlabel.RotatedLabelUI”/>

      <model extensionName=”RotatedLabel”/>

      <palette icon=”icons/rotatedlabel.jpg”/>

      <editor

            canResize=”true”

            showInDesigner=”true”

            showInMasterPage=”true”/>

      <outline icon=”icons/rotatedlabel.jpg”/>

      <propertyPage class=”org.eclipse.birt.sample.reportitem.

rotatedlabel.RotatedLabelPropertyEditUIImpl”/>

   </extension>

   <extension

         id=”rotatedLabel”

         name=”Rotated Label Extension”

         point=”org.eclipse.birt.report.model.reportItemModel”>

      <reportItem

            class=”org.eclipse.birt.sample.reportitem.rotated

label.RotatedLabelItemFactoryImpl”

            extensionName=”RotatedLabel”>

         <property

               defaultDisplayName=”Rotation Angle”

               defaultValue=”-45”

               name=”rotationAngle”

               type=”integer”/>

         <property

               defaultDisplayName=”Display Text”

               defaultValue=”Rotated Label”

               name=”displayText”

               type=”string”/>

      </reportItem>

   </extension>

   <extension

         id=”rotatedLabel”

         name=”Rotated Label Extension”

         point=”org.eclipse.birt.report.engine.reportitem

Presentation”>

      <reportItem

            class=”org.eclipse.birt.sample.reportitem.rotated

label.RotatedLabelPresentationImpl”

            name=”RotatedLabel”/>

   </extension>

</plugin>

Listing 2: The newReportItem( ) method

public class RotatedLabelItemFactoryImpl extends ReportItemFactory 

implements IMessages

{

public IReportItem newReportItem( DesignElementHandle deh ) {

  return new RotatedLabelReportItemImpl( deh );

Listing 3: The getLabel( ) method

public class RotatedLabelUI extends ReportItemLabelProvider 

{

 public String getLabel( ExtendedItemHandle handle ) 

 {

  if ( handle.getProperty( “displayText” ) != null ) {

   return ( String ) handle.getProperty( “displayText” );

  } else {

   return “Rotated Label”;

  }

 }

Listing 4: The onRowSets( ) method

public Object onRowSets( IRowSet[] rowSets ) throws BirtException 

 {

  

  if ( modelHandle == null )

  {

   return null;

  }

  

  

   // Generate the rotated text image

   graphicsUtil = new GraphicsUtil( ); –continued on page 52



����������������������
��
������������������

���������������
�� ��������������������������������������������
�� �����������������������
�� ���������������������������
�� ��������������������������������������������
�� ������������
�� �������������������������������������������������
�� ����������������������������
�� ��������������������
�� ������������
�� �������������
�� ����������������������������������
�� ���������������������������
�� �����������������������
�� �����������������
�� ����������������������������������
�� �������������������������������������
�� �������������������������������

�������������
��������������

�������������������������

���������������������������������2�3����
���������������������������

����������������
������������������������������

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA
   

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D
    

����������������������
�������������������������������������������������
����������������������������������������������������������������

��������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������
��
���������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������
����������������������������������������������������������

�����������������������������������������������������������������
����������������������������������������������������������������������
��������������������������������
��
������������������������������������������������������������������
�������������������������������������������������������������������������
������������������������������������������������������������������
������������������������������������������

�������������
����������������������������
������������������

����������������������������
� ��������������������������
� �������������������������
� �������������������
� �������������

�������� ����������������������������������
� ��������������������������

�������� ����������������������������������
� ����������������������������

�������� ����������������������������������
� ���������������������������

�������� �����������������������������������������������
� ����������������������������������������������
�� ����������������������������������������������
� ���������������������������������������������������������

��������������������������������

–continued on page 52



JDJ.SYS-CON.com60 October 2006

Feature

   org.eclipse.swt.graphics.Image rotatedImage = 

      graphicsUtil.createRotatedText( modelHandle );

   

   // Save the image to a byte array stream, via an ImageLoader

   ImageLoader imageLoader = new ImageLoader( );

   imageLoader.data = new ImageData[ ] 

{ rotatedImage.getImageData( ) };

   ByteArrayOutputStream baos = new ByteArrayOutputStream( );

   imageLoader.save( baos, SWT.IMAGE_JPEG );

   

   return baos.toByteArray( );    

  

 }

Listing 5: The getPropertyDefinitions( ) method

public IPropertyDefinition[ ] getPropertyDefinitions( )

{

 if ( rt == null )

 {

  return null;

 }

 return new IPropertyDefinition[ ]{

   new RotatedLabelPropertyDefinitionImpl ( null,

     “displayText”, “property.label.displayText”, 

     false, 

     PropertyType.STRING_TYPE,

     null,null,null,true),

   new RotatedLabelPropertyDefinitionImpl ( null,

     “rotationAngle”,   

     “property.label.rotationAngle”, 

     false, 

     PropertyType.INTEGER_TYPE,

     null,null,null,true),

 }

}

Listing 6: The getCateoryTabs( ) method

public class RotatedLabelPropertyEditUIImpl implements IReportItem

PropertyEditUI {

 public IPropertyTabUI[ ] getCategoryTabs( ) {

  return new IPropertyTabUI[ ]{

    new RotatedLabelGeneralTabUIImpl( ),

  };

 }

}

Listing 7: The GeneralCategoryWrapper class

static class GeneralCategoryWrapper 

extends AttributesUtil.PageWrapper {

 static String CATEGORY_NAME = “General”; 

 public void buildContent( Composite parent, 

  Map propertyMap ) {   

  parent.setLayout( createGridLayout( 2 ) );

  buildGridControl( parent,

    propertyMap,

    ReportDesignConstants.EXTENDED_ITEM,

    ReportItemHandle.NAME_PROP,

    1,

    false,

    new TextPropertyDescriptor

     ( new PropertyProcessor

     ( ReportDesignConstants.EXTENDED_ITEM,

      ReportItemHandle.NAME_PROP ) ),

    true,

    150);

    ...

Listing 8: The createRotatedText( ) method

public Image createRotatedText( ExtendedItemHandle 

modelHandle ) 

{

 Image stringImage;

 Image image;

 GC gc;

  String text = “”;

 if ( modelHandle.getProperty( “displayText” ) != null ) {

  text = ( String ) modelHandle.getProperty

   ( “displayText” );

 }

  Integer angle = null;

 if ( modelHandle.getProperty( “rotationAngle” ) != null ) {

  angle = ( Integer ) modelHandle.getProperty

   ( “rotationAngle” );

 }

  String fontFamily = “Arial”;

 if ( modelHandle.getProperty(Style.FONT_FAMILY_PROP ) != 

  null ) {

  fontFamily = ( String ) modelHandle.getProperty

   ( Style.FONT_FAMILY_PROP );

 }

  if ( display == null ) SWT.error

   ( SWT.ERROR_THREAD_INVALID_ACCESS ); 

 FontData fontData = new FontData( fontFamily, 14, 0 );

 Font font = new Font( display, fontData );

 try

 {

  gc = new GC( display );

  gc.setFont( font );

  gc.getFontMetrics( ); 

  Point pt = gc.textExtent( text );      

  gc.dispose( );

  stringImage = new Image( display, pt.x, pt.y ); 

  gc = new GC( stringImage );

  gc.setFont( font );

  gc.drawText( text, 0, 0 ); 

  image = rotateImage( stringImage, angle.doubleValue( ) );  

    

  gc.dispose( ); 

  stringImage.dispose( ); 

  return image;

 }

 catch( Exception e )

 {

  e.printStackTrace( );

 }

 return null;

} 



 

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are 
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the 
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher 
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess 
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The 
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject 
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions 
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the 
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the 
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred 
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing 
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 .NET Developer’s Journal www.sys-con.com/dotnet 888-303-5282 55

 Adobe www.adobe.com/go/try_jdjchoice  35

AjaxWorld East Conference 2007 www.ajaxworldexpo.com 201-802-3022  47

 Altova www.altova.com 978-816-1600  4

 Backbase www.backbase.com/jsf 866-800-8996 33

 Business Objects www.businessobjects.com/devxi/misunderstood  13

 IBM ibm.com/takebackcontrol/flexible   7

 Infragistics www.infragistics.com/jsf 800-231-8588  15

 Instantiations www.instantiations.com/rcpdeveloper 800-808-3737  17

 InterSystems www.intersystems.com/cache21p 617-621-0600  11

iTVcon.com Conference & Expo www.itvcon.com 201-802-3023 59

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 61

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 51

 Jinfonet www.jinfonet.com/javareporting 240-477-1000 21

 Laszlo www.openlaszlo.org  41

 Northwoods Software Corp. www.nwoods.com 800-434-9820 45

 OPNET Technologies, Inc. www.opnet.com/pinpoint 240-497-3000 19

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 Cover IV

 Quest Software www.quest.com/hero 949-754-8000 Cover II

 RealWorld Flex Seminar www.flexseminar.com  57

 Software FX www.softwarefx.com 800-392-4278 Cover III

 SYS-CON Website www.sys-con.com 888-303-5282 49

 TIBCO Software Inc. http://developer.tibco.com/ 800-420-8450 27



JDJ.SYS-CON.com62 October 2006

he JCP evolves in much the same way 
as software: we gain experience with 
the current implementation, gather 
ideas from many sources, give an ini-

tial ordering to the many ideas, write a draft, 
get initial feedback, write another draft, get 
more feedback and so on, towards a reason-
able consensus of what the next version of 
the product or process shall become. 
 No successful, sustainable efforts operate 
in a vacuum, and the Java Community Pro-
cess is no different. Technological advance-
ment, shifting business models, and chang-
ing markets all contribute to ever-changing 
environments in which our community 
lives. To adapt to existing changes, and/or to 
build responsive capabilities for the future, 
JCP evolves. We are at such an evolution-
ary turn, and along with the two Executive 
Committees, I am working to shape the next 
chapter of the community.
 By the time you read this column, the 
process change specification will have al-
ready been submitted to JCP.org, as JSR 306. 
Change in the process happens by using the 
JCP mechanism itself, a JSR. The Executive 
Committees form the expert group for such 
a JSR with Sun as the spec lead. The process 
has been evolved several times, until now, in 
a similar manner; JSR 913 led to JCP 2.1, JSR 
99 created JCP 2.5 and the current Java Spec-
ification Participation Agreement(JSPA), 
and JSR 215 gave us the current version JCP 
2.6. You can find these on the JCP.org site - a 
road map of the evolution of the JCP to date.
 For this iteration of the process rules, I 
anticipate that both the process document 
(http://jcp.org/en/procedures/jcp2) and 
the JSPA (the membership agreement and 
IP policy) will change. As with any JSR, the 
eventual specifications are subject to expert 
group deliberations and EC approval, but 
here are some of the things we will be work-
ing on. 
 Let’s start with this question: should it be 
possible to implement certain specifications 
outside the Java platform? Yes, one can envi-
sion scenarios in which it makes sense to 
do this.  In enterprise environments where 
technically different architectures need to 
inter-operate through Web services, service 

oriented architectures, or other protocols, it 
can be valuable to enable this standardiza-
tion work to take place directly in the JCP, or 
for example, to enable the implementation, 
in environments besides Java, of some of the 
specs related to XML. 
 Many JSRs perform Java standardization 
work that is based on or related to external 
specification work. For example, some of 
the Java ME JSRs relate to OSGi; there are 
the OMG CORBA specs in Java SE and Java 
EE; and the JAX* JSRs depend on work in 
W3C, OASIS and elsewhere. Often the spec 
leads and expert groups like to exchange 
working drafts or ideas with the working 
groups at these organizations. This new 
process JSR will explore how best to facilitate 
these interactions, which are called liaisons 
in the standards world. Initial investigation 
indicates that working on the JSPA confiden-
tiality statement may address such needs, 
which leads me to the next group of topics 
that the expert group will be focusing on: 
transparency, duration of JSRs, and indi-
vidual members.
 Open source software influenced the evo-
lution of the JCP in the past. When the JCP 
first started, open source software did exist, 
but was not generally accepted as a develop-
ment method or a business model until a few 
years later. The Apache Software Founda-
tion, through its expertise (and persistence!), 
along with many others, helped Sun under-
stand how Java specification standardization 
and open source can co-exist and co-oper-

ate. Over the years, many developers and IT 
departments had become accustomed to 
using open source methods to develop and 
market software. The JCP adjusted to ensure 
that open source efforts could build compat-
ible implementations of its specs. Since then, 
a new trend has been emerging:  it is not 
only commonly accepted to use open source 
methodologies to develop software, but also 
to apply this life style to the development of 
specifications. This encourages us to evalu-
ate whether community members and the 
general public alike have sufficient insight 
into the work and progress of an expert 
group and whether the expert group has the 
right tools to inform the community of its 
progress and design decisions.
 In October 2002, JCP 2.5 was launched, 
enabling the compatibility of open source 
and Java. Since then I have seen a significant 
and continuing increase of individual partic-
ipation in the JCP (although I just can’t shake 
the feeling that making the membership free 
had some effect too). Individual members 
(developers participating under personal 
titles) are highly valued in the community. 
Individuals serve on the EC, various JSRs are 
led by individuals (among them concur-
rency and Groovy), and many participate 
on key JSRs, such as the Java SE and Java EE 
umbrella JSRs. The expert group will explore 
how best to ensure a continued, mutually 
effective, and efficient engagement.
 As you can see from JSR 306’s descrip-
tion on the jcp.org Web site, I proposed a 
rather aggressive schedule. My fellow spec 
leads know how hard it is to keep to such a 
schedule. We may not finish in May 2007, as 
the schedule proposes, but my goal for the 
year is to be as far along in the process as 
possible, as I know that many community 
members are eagerly awaiting some of the 
changes we are proposing here.
 These are just a few of the topics that this 
process JSR will explore. If you read the JSR 
proposal on JCP.org, you’ll discover more. 
The Executive Committee members and I are 
very interested to learn your opinions on the 
JCP and its evolution. Stay tuned for further 
updates on JSR progress and more news 
from the JCP.    

JSR Watch

Onno Kluyt
JCP:  Shaping the Next Chapter

T

Onno Kluyt is the  

director of the  

JCP Program at  

Sun Microsystems  

and Chair of  

the JCP. 

onno@jcp.org





��������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������

������������������������������������������������

������������������������������������������������

�������
������������������
�����������������
�������������

������� ��

����������������
��������������

������������������
��������������
�������������

����� ��

��������������
�����������
�������������

�������������������

������� ��

��������������
������������

������
�����������������

��������

����������

����������������
���������������
���������������

�����������
�����������������

����� ��

��������
�����������
�������������

���������

����������������������������������������������������������������������


